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Databases Have Settings…

effective_cache_size

work_mem

wal_sync_method

max_prepared_transactions

random_page_cost

checkpoint_segments

maintenance_work_mem

shared_buffers

…

200+ settings

Determines 
performance
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Database Complexity 

Van Aken D. et. al., “Automatic Database Management System Tuning Through 
Large-scale Machine Learning”. SIGMOD 2017 3



Tuning Makes a HUGE Difference
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Tuning is Simple…?
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Workload “Tuner”
Database 

Configuration

What is a workload?

How do we tune?

What are you optimizing for?



Age of Log-Structured Merge-Trees
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How do we go about tuning these knobs?

High impact tuning knobs

Compaction Buffer size Size ratio

Dictates performance!



What is a Workload?
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Reads

W
ri

te
s
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Query Types

Empty Reads : z0 Non-Empty Reads : z1

Range Reads: q Writes : w
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Cool! How do we go about tuning?

Workload : (z0, z1, q, w)



LSM Trees

mbuff <k, v>

Size Ratio (T)

mfilter

Buffer fills → Sort and Flush to disk
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Compaction policy: 𝜋

Tiering (↑) or Leveling (↓)

Buffer

Level 1

Level 2

…

Level L

𝜋 : Compaction Policy
T : Size Ratio
mfilter : Filter memory
mbuff  : Buffer memory



LSM Trees – A Point Read

mbuff <k, v>

[2, 20]

mfilter
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[6, 40] [52, 96]

[0, 54]

[23, 70]

Buffer

Level 1

Level 2

…

Level L [58, 124]

READ: 62



The LSM-Tuning Problem
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Minimizer!



Point Reads
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Empty Reads : z0

Non-Empty Reads : z1

Sum of 
false 

positives

Probability query is 
satisfied at level i

False positives 
from levels above

[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM 
International Conference on Management of Data (SIGMOD '17).



Range-Reads and Writes
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1 I/O per 
Seek per 

level

Sequential 
read based on 

selectivity

Writes only flush 
once buffer is full

Average number of merges a write will participate in

[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM 
International Conference on Management of Data (SIGMOD '17).

Writes : w

Range Reads: q



The LSM-Tuning Problem
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Define our cost function



Tuning Problems
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'Best’ Configuration

Optimal tuning depends on workload

Workload uncertainty leads to 
sub-optimal tuning



Outline

Introduction

LSM Trees Notation

Nominally Tuning LSM Trees

ENDURE: Robustly Tuning LSM Trees

The ENDURE Pipeline

ENDURE Evaluation
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We’ve Got a Problem…
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Minimizer!

“It works on my machine!!!”



The LSM-Tuning Problem

Nominal

Robust
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Robust Tuning
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Optimal configuration for 
expected workload

Robust configuration for the 
workload neighborhood



Uncertainty Neighborhood
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Workload Characteristic



Calculating Neighborhood Size

Historical workloads
maximum/average uncertainty among 
workload pairings

User provided workload uncertainty
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Workload Characteristic



Solving Robust Problem
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Iterating over every possible 
workload is expensive



Solving Robust Problem
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Iterating over every possible 
workload is expensive

Rewrite as a min-max

Find the dual of the maximization 
problem to reduce to a feasible 
problem [2]

[2] Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. 2013. Robust 
Solutions of Optimization Problems Affected by Uncertain Probabilities.



ENDURE Pipeline
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Workload Characteristic System Information

    Page Size

    Memory Budget

ENDURE
Solves the 

Robust Problem

Expected performance

RocksDB Configuration



Testing Suite

ENDURE in Python, implemented in tandem with RocksDB

Uncertainty benchmark

• 15 expected workloads

• 10K randomly sampled workloads as a test-set

Normalized delta throughput

Nominal vs Robust: > 0 is better

        1 means 2x speedup
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Impact of Workload Type
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Unbalanced workloads result in overfitted nominal tunings

Given to ENDURE



Impact of Workload Type
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Peak of the distribution moves towards higher throughput as we consider higher uncertainty



Workload Sequence on RocksDB
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oRocksDB instance setup with 10 million unique key-value pairs of size 1KB

oEach observation period is 200K queries, with 5 observations per session 6 
million queries to the DB

oWrites are unique, range queries average 1-2 pages per level



Workload Sequence
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Workload Sequence
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120%  

Small subset of results! Take a look at the paper for a more detailed analysis



Thanks!

Workload uncertainty creates suboptimal tunings

ENDURE: robust tuning using neighborhood of workloads

Deployed ENDURE on RocksDB

disc.bu.edu/

www.ndhuynh.com/

       @nd_huynh
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https://disc.bu.edu/
http://www.ndhuynh.com/
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