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Databases Have Settings...

a effective_cache_size

a work_mem

a wal_sync_method

a max_prepared_transactions

a random_page cost
a checkpoint_segments

a maintenance_work_mem

a' shared_buffers

200+ settings
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Database Complexity
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Van Aken D. et. al., “Automatic Database Management System Tuning Through

Large-scale Machine Learning”. SIGMOD 2017



Tuning Makes a HUGE Difference

Databricks Sets Official Data Warehousing

Performance Record

@ a by Reynold Xin and Mostafa Mokhtar  AutHor
. Posted in COMPANY BLOG | Novembel

Today, we are proud to announce that Dat
100TB TPC-DS, the gold standard perform
Databricks SQL outperformed the previc
benchmark news, this result has been fori

Benoit Dageville
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Thierry Cruanes

These results were corroborated by resee
which frequently runs TPC-DS on popular
benchmarked Databricks and Snowflake ©
and 12x better in terms of price perform: @
warehouses such as Snowflake become p (in]
production.
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Thought Leadership > Executive Platform

Snowflake Claims Similar
Price/Performance to Databricks, but Not
So Fast!

ﬁ @ 9 by Mostafa Mokhtar, Arsalan Tavakoli-Shiraji, Reynold Xin and Matei Zaharia
s Posted in COMPANY BLOG | November 15, 2021

On Nov 2, 2021, we announced that we set the official world record for the fastest data
warehouse with our Databricks SOL lakehouse platform. These results were audited and
reported by the official Transaction Processing Performance Council (TPC)in a 37-page
document available online at tpc.org. We also shared a third-party benchmark by the
Barcelona Supercomputing Center (BSC) outlining that Databricks SQL is significantly
faster and more cost effective than Snowflake.

Alot has happened since then: many congratulations, some questions, and some sour
grapes. We take this opportunity to reiterate that we stand by our blog post and the
results: Databricks SQL provides superior performance and price performance over
Snowflake, even on data warehousing workloads (TPC-DS).

When we founded Snowflake, we set out to build an innovative platform. We had the opportunity to take into

account what had worked well and what hadn’t in prior architectures and implementations. We saw how we could

leverage the cloud to rethink the limits of what was possible. We also focused on ease of use and building a system

that “just worked.” We knew there were many opportunities to improve upon prior implementations and innovate to

lead on performance and scale, simplicity of administration, and data-driven collaboration.



Tuning is Simple...?

ATRADE OFFERA

[ Workload }— c D?-tabast.e ] i receive: you receive:
ontiguration WORKLOAD DATABASE
\. L m—

What is a workload?

How do we tune?

What are you optimizing for?




Age of Log-Structured Merge-Trees

ﬁ RocksDB @ ?S OLite High impact tuning knobs
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cassandra
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How do we go about tuning these knobs?

Dictates performance!




What is a Workload?

Writes

Reads

Writes

Range Reads



BOSTON
UNIVERSITY

Query Types

Workload : (zy, 24, q, W)

Empty Reads: z, Non-Empty Reads : z;
] ]
[ ] ]
.. ] - ]
Range Reads: q Writes : w
) . N
] [ [ \‘]\\]
.. ]

Cool! How do we go about tuning?
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LSM Trees

A A

Buffer [ my, ¢ <k, v> I—\ Buffer fills & Sort and Flush to disk m : Compaction Policy
T : Size Ratio
I/ Mgy, - Filter memory
Level 1 | m, : Buffer memory
|
| I
Level 2 : : J
: : Compaction policy:
| : Tiering (1) or Leveling (1)
|
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LLSM Trees - A Point Read
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Level 1
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The LSM-Tuning Problem

w : Workload (zg, z1, q, W)

® : LSM Tree Design  (Mpyrr, Mejster, T, 1)
C : Cost

¢* = argming C(w, P)

Workload DB Config
w P

11
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Point Reads

Sum of
false

Empty Reads : z, positives

L 3
[ ) Zo(®) =) fi
- ] i1

Probability query is False positives

MGIS above
Non-Empty Reads: z; 1 ’ |

|
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[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM

. 12
International Conference on Management of Data (SIGMOD '17).
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Range-Reads and Writes

Sequential
read based on
selectivity

Range Reads: q

) '
. 11/0 per
) Q(P) = Sro - = + L} Seek per
] evel

_ Average number of merges a write will participate in
Writes : w A

| |
-\ L T-1
[ \ﬂ\ W((I)) T B | 9 ’ (1 - Arw)
[ ~ —
Writes only flush
once buffer is full

[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM

. 13
International Conference on Management of Data (SIGMOD '17).



The LSM-Tuning Problem

w : Workload (zg, z1, q, W)

® : LSM Tree Design  (mpy, s, Mejiter, T, )
C : Cost (I/0)

®* = argming C(w, D)

Define our cost function

C(W,®) = WTe(®) = 20 - Zo(®) + 21 - Z1(®) + q- Q(P) + w - W (D)
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Tuning Problems

'‘Best’ Configuration

(I

Workload 1 Workload 2

Wy : Workload (zg, z1, q, W)

Cost (1/0s)

Cost

Cost (1/0s)

100%100% S

Optimal tuning depends on workload

Workload uncertainty leads to
sub-optimal tuning

15



Outline

ENDURE: Robustly Tuning LSM Trees

The ENDURE Pipeline

ENDURE Evaluation

16



We've Got a Problem...

w : Workload (zy, z1, q, W)
® : LSM Tree Design  (Mpyrr, Mejster, T, 1)
C : Cost (I1/0)

®* = argming C(w, D)

Estimated Deployed DB
w D

|

I

Production
w

|

“It works on my machine!!!”
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The LSM-Tuning Problem

w : Workload (zy, 24, q, W)
@ : LSM Tree Design (mbuff, mfilte,., T, Tl')

¢+ Cost (I/O) i:?i‘;ﬁ%ds\\\\;40701;0%%‘1’9‘55’%
®* = argming C(w, ®) Nominal

18
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Robust Tuning

Wy : Workload (zg, 21, q, W)

®* = argming C (W, ®)

s.t., weU’

Cost (I/Os)

Optimal configuration for
expected workload

Robust configuration for the
A workload neighborhood

++++ Nominal
XX Robust

Cost (I/Os)

Workload 1 Workload 2

19
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Uncertainty Neighborhood

Neighborhood of workloads (p) via the KL-divergence

Workload Characteristic

100%

~ Z’" W
Ixy (w,w) = Wi ’108(_)
i=1 Wi

Writes (w)

. UL : Uncertainty Neighborhood of Workloads
p :Size of this neighborhood

20
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Calculating Neighborhood Size

Workload Characteristic Historical workloads
maximum/average uncertainty among

o workload pairings

Writes (w)

User provided workload uncertainty

21

UP: Uncertainty Neighborhood of Workloads
p :Size of this neighborhood
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Solving Robust Problem

[terating over every possible Pr = arg mq'}n wic(®)
workload is expensive

100%

Writes (w)

1
=
R

22



Solving Robust Problem

[terating over every possible ®p = argmin w'c(P)

. . o
workload is expensive X p
s.t. welUl

4

min max w'c(®P)
¢ weuk

4

Rewrite as a min-max

Find the dual of the maximization

problem to reduce to a feasible , . i 5" ci(®) — 1
1min + + Wi
problem [2] aaty 1P L0k T
[2] Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. 2013. Robust 53

Solutions of Optimization Problems Affected by Uncertain Probabilities.
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ENDURE Pipeline

Workload Characteristic System Information
Expected performance

Page Size

Memory Budget

—_
o
=
N

Writes (w) )

50%

S Solves the
Robust Problem

24



Testing Suite

ENDURE in Python, implemented in tandem with RocksDB

Uncertainty benchmark

* 15 expected workloads

* 10K randomly sampled workloads as a test-set

Normalized delta throughput

o(w,d,) — 1/C(w,d;)
1/C(w,®;)
Nominal vs Robust: > 0 is better

Aw (P, P2) =

1 means 2x speedup

Index

(z0,21,9, W)

Type

25%

25%

25%

25 UniforD

97%
1%
1%
1%

1%
97%
1%
1%

1%
1%
97%
1%

1%
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97%
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49%

49%

49%
1%
1%
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1%
1%

49%

49%
1%

1%
49%
1%
49%
1%
49%

1% Bimodal >

1%
49%
1%
49%
49%

—
W N o=

14

33%

33%

33%
1%

33%
33%
1%
33%

33%
1%
33%
33%

1% Trimodal >

33%
33%
33%
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Impact of Workload Type

Index (20,21, W) Type

1.5 1 /‘/Q—-—‘ ¢ ¢ ¢ ¢ —¢ ¢ ‘ 0  25% 25% 25% 25% Uniform

/@/ . 1 97% 1% 1% 1% Unimodal
.y 2 1% 97% 1% 1%
N ’ ,——-X""x’—x x o % % » *® 3 3 1% 1% 97% 1%
1 0 _ S ‘___,x (] o o o
S 1. x/x 4 1% 1% 1% 9%

Z 5 49% 49% 1% 1% Bimodal
@ 6 49% 1% 49% 1%
< 0.5 A ) 7 9% 1% 1% 49%
4 t ¢ Unimodals 8 1%  49% 49% 1%
) 9 1% 49% 1% 49%
—3%— Bimodals 10 1% 1% 49% 49%

0.0 7 ) ) . ) 11 33% 33% 33% 1% Trimodal
I I I I I I 12 33% 33% 1% 33%
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 13 33% 1% 33% 33%
. 14 1% 33% 33% 33%

P «—— Given to ENDURE

Unbalanced workloads result in overfitted nominal tunings
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Impact of Workload Type

Index (20,21, W) Type
25% 25% 25% 25% Uniform

15 ——————————

(=]

97% 1% 1% 1% Unimodal
1% 97% 1% 1%
1% 1% 97% 1%
1% 1% 1% 97%

49% 49% 1% 1% Bimodal
49% 1% 49% 1%
49% 1% 1% 49%

1% 49% 49% 1%

1% 49% 1% 49%

1% 1% 49% 49%

X X—X—N—X—X—X—)

o 3 v G W =

=
S/
>
S
4 nimodals Trimodals
—x%— Bimodals —=4— Uniform
00 === g === op ==y op e ey e = ey e e = =
I I ! ! ! ! 33% 33% 1% 33%
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 33% 1% 33% 33%

p 14 1% 33% 33% 33%

—
o ©

—
—

33% 33% 33% 1% Trimodal

[
W Do

Unbalanced workloads result in overfitted nominal tunings

Tuning with uncertainty (p > 0.5) provides benefits

27



Relationship of Expected and Observed p

W7: (49%, 1%, 1%, 49%) Wi11: (33%, 33%, 33%, 1%)

Observed p: distance from executed )

workload to expected workload \
2

19003 0 noviyg bsollrow :q batdaqxd

fdoismm q batoaqgxs brs bavisado nadw jtuqdguotds 32adgiH

badaismrzim 2i q nadw tuqdguotd: 32awo.d
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Impact of Observed vs Expected p

Ayp(Dy, PR)

p:0 p:0.25 \
4
/| Robust Tuning | Robust Tuning T~
II: Leveling II: Leveling
T: 46.3 T: 11.9
: 4.4 4 h: 23

—
W11 = (33%, 33%, 33%, 1%)

Ixr (W, wiy)

Ik (W, wiy)

190103 03 n9viyg :q bardraqxd

batuodaxs mott 9onsizib :q bavisadO
bsolItow batdaqgxs ot bsoll1ow
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Impact of Observed vs Expected p

p:0 p:0.25 p:1
34 Robust Tuning | Robust Tuning | Robust Tuning
II: Leveling II: Leveling II: Leveling e
T: 463 T: 11.9 T: 8.2 g
~ o4 h: 44 4 h: 23 4 h: 1.0 :
&
& W11 = (33%, 33%, 33%, 1%)
Z
© 11 -
2
<
0__ S e e e ——————————
_1 T T T T T T T T T T T T T T T T T T T T
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Ik (W, wi1) Ixr (W, wyq) Ixr (W, wiq) Ixp (W, wq)

3nisi19onu oo 10t 230226 q batyaqxs 1odgiH

xP1o qu basqe [sitnaiod -
991} wollsr2 « 29titw 2918qiditne < q batooqxs 19dgiH
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p and Performance Gain Distribution

p:0

e
N

e
w

Probability Density
o o
—_ )

o
(=)
1

Robust
I1: Leveling
T: 46.3
h: 44

Nominal
II: Leveling
T: 47.0

h: 44

0 1
1/C(w, D)

W11 = (33% ’ 33%, 33%, 1%)

190nu3 03 noviyg :q batoaqxd

juqdguordT

31



BOSTON
UNIVERSITY

p and Performance Gain Distribution

:0 :0.25 11 12
Robust P Robust / > \Robust / > \Robust
2 II: Leveling i II: Leveling : Leveling i : Leveling
2 037 T: 46.3 i} v T 119 i : 8.2 i  T: 55
é’ h: 4.4 ! h: 2.3 h: 1.0 ! : 1.0
270.2- Nominal . .
%‘ I1: Leveling
£ 0 T: 47.0 ] ]
v h: 4.4
0.0 - T T - T T
0 1 1 0 1 0 1
1/C(w, @) 1/Cw, D) 1/Cw, ®) 1/Cw, D)

W11 = (33% ’ 33%, 33%, 1%)

Peak of the distribution moves towards higher throughput as we consider higher uncertainty
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Workload Sequence on RocksDB

Model I/O Nominal Robust W7 (49%, 1%, 1%, 49%)
207 —%— h:82,T:84 —@— h:1.0,T:47 Wi (32% 47% 22%, 0%
> 11: Tiering 11: Leveling
[
= 10 A
o
)
a, 0
%2]
<

1. Reads 2. Range 3. Empty Reads 4. Non-Empty Reads 5. Reads 6. Reads
(30%, 58%, 12%, 0%) (7%, 10%, 84%, 0%) (86%, 9%, 4%, 0%) (8%, 86%, 6%, 0%) (30%, 58%, 12%, 0%) (30%, 58%, 12%, 0%)

RocksDB instance setup with 10 million unique key-value pairs of size 1KB

Each observation period is 200K queries, with 5 observations per session 6
million queries to the DB

Writes are unique, range queries average 1-2 pages per level

33
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Workload Sequence

Model I/0O Nominal Robust W7 (49%, 1%, 1%, 49%)
20 —h— h: 82, T 8.4 —0— h: 1.0, T:4.7 V'\\fl (32%’ 47%, 22%, 0%)
> 11: Tiering 11: Leveling
5}
= 10 A
o
3
a, 0
%]
Q
= 10 7 System I/0O p:231
Ixr. (W, w) : 2.31
5 -
O -
1. Reads 2. Range 3. Empty Reads 4. Non-Empty Reads 5. Reads 6. Reads
(30%, 58%, 12%, 0%) (7%, 10%, 84%, 0%) (86%, 9%, 4%, 0%) (8%, 86%, 6%, 0%) (30%, 58%, 12%, 0%) (30%, 58%, 12%, 0%)
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Workload Sequence

Small subset of results! Take a look at the paper for a more detailed analysis

1/¢

10 7 System I/O p:231

Iz (W, W) : 2.31

System Latency Throughput

120% T ( 26kqps

5.7 kQPS

Latency (ms) per Query

T T T T T T
1. Reads 2. Range 3. Empty Reads 4. Non-Empty Reads 5. Reads 6. Reads
(30%, 58%, 12%, 0%) (7%, 10%, 84%, 0%) (86%, 9%, 4%, 0%) (8%, 86%, 6%, 0%) (30%, 58%, 12%, 0%) (30%, 58%, 12%, 0%)
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Thanks!

Workload uncertainty creates suboptimal tunings

ENDURE: robust tuning using neighborhood of workloads

Deployed ENDURE on RocksDB

dischuedu/ |22

www.ndhuynh.com/
%W @nd_huynh
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Cost (I/0s)
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