
Learning to Optimize LSM-trees:
Towards A Reinforcement Learning based
Key-Value Store for Dynamic Workloads

Presenters: Alex Ott, James Chen

Mo, Chen, Luo, Shan — SIGMOD 24’

Why Use an LSM?

Tiered

Tuning

Workload dictates configuration

Workload

What happens when the workload changes over time?

Leveled

Dynamic Workload

Dynamic WorkloadHow is robust tuning (Endure) different from dynamic tuning?

Motivation

How to build a workload-aware LSM that adapts in real-time?

Real world workloads are dynamic

Social Media Data
Warehouse

Data Lake

Intuition

Leveled Tiered

Data Movement
Policy

Background

Compactions Drive Data Layout

Fast Ingestion

Efficient Space
Utilization

Competitive
Reads Compaction

What is Machine Learning?

Generalizablehow to learn, not
what to do

Data, Data, and Data

Too much data

Reinforcement Learning (RL) Mental Model

Trial and Error

Reinforcement Learning (RL) Mental Model

Trial and Error

Advantages of RL?

Challenges?

No prior data

Need data to
improve

RusKey

RL in RusKey

Agent Environment Actions State Reward

Snake
Game

Snake
character

2D grid Turn left or
right

Snake and apple
position

+ food
- Running into the

wall

LSM Data
layout
decider

Database Update # of
sorted runs

of sorted runs in
each level

+ Better latency
- Worse latency

Key Components
Environment2

State4

Agent1

Action3

Reward5

FLSM

Transitions: Greedy, Lazy, and Something in Between

What is the problem with these schemes?

LERP Framework

LERP Framework
Adjust compaction policy

LERP Framework

Experience samples:
● Action of the

policy change
● FLSM- tree state
● Reward for the

action

LERP Framework

Selecting the best
compaction strategy

LERP Framework

Assess the effectiveness
of selected compaction
policy

LERP Framework

Converge when
workload remains
stable

LERP Framework

Exit convergence when
workload changes.

LERP explores new
compaction strategy
adapted to new
workload.

Level Based RL Model

 State Action Space Reward

LSM-tree
configuration

Increase or
decrease in
compaction
policies (level
specific)

Minimize
latency

Why Policy Propagation to Optimize Training?

Deeper level size is exponentially larger

Why Policy Propagation to Optimize Training?

Deeper level size is exponentially larger
 Compaction happens less frequently at deeper level

Why Policy Propagation to Optimize Training?

Deeper level size is exponentially larger
 Compaction happen less frequently at deeper level
 Less available training data

Why Policy Propagation to Optimize Training?

Deeper level size is exponentially larger
 Compaction happen less frequently at deeper level
 Less available training data
 Deeper level needs more training data

Why Policy Propagation to Optimize Training?

How to learn the compaction policy at a deeper level?

Policy Propagation based on Cost Analysis

Uniform Bits-per-Key
Assigns the same bits-per-key to BF
(per level)

Monkey Allocation
Shallow level assigns more
bits-per-key than deeper
level

R/W cost ratio is similar across level

Policy Propagation based on Cost Analysis

Uniform Bits-per-Key
Assigns the same bits-per-key to BF
(per level)

Monkey Allocation
Shallow level assigns more
bits-per-key than deeper
level

R/W cost ratio is similar across level

Policy Propagation based on Cost Analysis

Uniform Bits-per-Key
Assigns the same bits-per-key to
Bloom Filter (BF) (per level)

Monkey Allocation
Shallow level assigns more
bits-per-key than deeper
level

R/W cost ratio is similar across level
R/W amplification is same across level

Policy Propagation based on Cost Analysis

Uniform Bits-per-Key
Assigns the same bits-per-key to BF
(per level)

Monkey Allocation
Shallow level assigns more
bits-per-key than deeper
level

Use RL model to learn the policy of level 1
Propagate the policy to all levels

Policy Propagation based on Cost Analysis

Uniform Bits-per-Key
Assigns the same bits-per-key to BF
(per level)

Monkey Allocation
Shallow level assigns more
bits-per-key than deeper
level
R/W cost ratio is different

Policy Propagation based on Cost Analysis

Uniform Bits-per-Key
Assigns the same bits-per-key to BF
(per level)

Monkey Allocation
Shallow level assigns more
bits-per-key than deeper
level
R/W cost ratio is different
Policy can vary across level

Policy Propagation based on Cost Analysis

Uniform Bits-per-Key
Assigns the same bits-per-key to BF
(per level)

Monkey Allocation
Shallow level assigns more
bits-per-key than deeper
level
Infer remaining level policy based
on the preceding two levels policy

Results

Experiment Design

Initial Data
Load:

100 million kv
entries

Key Size: 128B

Value Size: 896B

 Mission:
100 million operations

 (lookup or updates)

divided into 2000 mission

Hardware:
Intel Xeon Gold
6326@2.9 GHz
CPU, NVMe
SSD, Ubuntu
22.04 OS.

Baseline Comparison
• Aggressive Compaction (K = 1):

• low read cost
• high write amplification

• Lazy Compaction (K = 10):
• high read cost
• low write amplification

• Moderate Compaction (K = 5):
• Balance between aggressive and lazy
• moderate read/write amplification

 K
Max Number of
sorted runs per level

Workload
• Workload Types:

• read-heavy (10% update)
• balanced (50% update)
• write-heavy (90% update),
• write-inclined (70% update)
• read-inclined (30% update)

Each section includes 50 million operations which are divided into 1000 missions
with 50000 operations for each.

Evaluation - Static Workload

Ruskey achieves the lowest latency per query across all static
workloads as missions increase

Evaluation - Dynamic Workload

RusKey maintains near-optimal latency across all dynamic workload
sessions, while other baselines exhibit sub-optimal performance in at
least one session.

4x better than
aggressive

2.4x better than
moderate/3.5x
better than Lazy

Ruskey Under Monkey Scheme

Compare RusKey with the baselines under the Monkey
scheme with the same workload setting

Ruskey Under Monkey Scheme
A state-of-the art compaction policy

Compare RusKey with the baselines under the Monkey
scheme with the same workload setting

Ruskey Under Monkey Scheme

Ruskey and Lazy Leveling both achieve near-optimal performance,
but Ruskey outperforms Lazy Leveling in every workload since it
adopts novel policy setting through policy propagation

A state-of-the art compaction policy

Compaction policy setting of RusKey

25 million operations of r/w balanced workload under the Monkey
scheme

Compaction policy setting of RusKey

25 million operations of r/w balanced workload under the Monkey
scheme

The running time of processing all the operation

Compaction policy setting of RusKey

25 million operations of r/w balanced workload under the Monkey
scheme
Different Compaction policy at each level (Ruskey)

The running time of processing all the operation

Compaction policy setting of RusKey

RusKey achieves optimal end-to-end and by-level latency by
self-tuning its compaction policy under a balanced workload

The running time of processing all the operation

Summary

Reinforcement
Learning

Efficient
Transitions

Reduce
Required Data

