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Why Use an LSM?



Tiered

Tuning

Workload dictates configuration

Workload

What happens when the workload changes over time?

Leveled



Dynamic Workload

Dynamic WorkloadHow is robust tuning (Endure) different from dynamic tuning?



Motivation

How to build a workload-aware LSM that adapts in real-time? 
 

Real world workloads are dynamic

Social Media Data 
Warehouse

Data Lake



Intuition

Leveled Tiered

Data Movement 
Policy



Background



Compactions Drive Data Layout

Fast Ingestion 

Efficient Space 
Utilization

Competitive 
Reads Compaction



What is Machine Learning?

Generalizablehow to learn, not 
what to do



Data, Data, and Data

Too much data



Reinforcement Learning (RL) Mental Model 

Trial and Error



Reinforcement Learning (RL) Mental Model 

Trial and Error



Advantages of RL?

Challenges?

No prior data

Need data to 
improve



RusKey



RL in RusKey

Agent Environment Actions State Reward

Snake 
Game

Snake 
character

2D grid Turn left or 
right

Snake and apple 
position

+ food
- Running into the 

wall

LSM Data 
layout 
decider

Database Update # of 
sorted runs

# of sorted runs in 
each level

+ Better latency
- Worse latency



Key Components
Environment2

State4

Agent1

Action3

Reward5



FLSM



Transitions: Greedy, Lazy, and Something in Between

What is the problem with these schemes?





LERP Framework



LERP Framework
Adjust compaction policy



LERP Framework

Experience samples: 
● Action of the 

policy change
● FLSM- tree state
● Reward for the 

action



LERP Framework

Selecting the best 
compaction strategy



LERP Framework

Assess the effectiveness 
of selected compaction 
policy



LERP Framework

Converge when 
workload remains 
stable 



LERP Framework

Exit convergence when 
workload changes. 

LERP explores new 
compaction strategy 
adapted to new 
workload.



Level Based RL Model

    State Action Space    Reward

LSM-tree 
configuration

Increase or 
decrease in 
compaction 
policies (level 
specific)

Minimize 
latency



Why Policy Propagation to Optimize Training?
 

Deeper level size is exponentially larger 
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Why Policy Propagation to Optimize Training?
 

Deeper level size is exponentially larger 
 Compaction happen less frequently at deeper level 
 Less available training data
 Deeper level needs more training data



Why Policy Propagation to Optimize Training?
 

How to learn the compaction policy at a deeper level? 



Policy Propagation based on Cost Analysis 

Uniform Bits-per-Key
Assigns the same bits-per-key to BF 
(per level)

Monkey Allocation
Shallow level assigns more 
bits-per-key than deeper 
level

R/W cost ratio is similar across level
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Policy Propagation based on Cost Analysis 

Uniform Bits-per-Key
Assigns the same bits-per-key to 
Bloom Filter (BF) (per level)

Monkey Allocation
Shallow level assigns more 
bits-per-key than deeper 
level

R/W cost ratio is similar across level
R/W amplification is same across level



Policy Propagation based on Cost Analysis 

Uniform Bits-per-Key
Assigns the same bits-per-key to BF 
(per level)

Monkey Allocation
Shallow level assigns more 
bits-per-key than deeper 
level

Use RL model to learn the policy of level 1
Propagate the policy to all levels



Policy Propagation based on Cost Analysis 

Uniform Bits-per-Key
Assigns the same bits-per-key to BF 
(per level)

Monkey Allocation
Shallow level assigns more 
bits-per-key than deeper 
level
R/W cost ratio is different



Policy Propagation based on Cost Analysis 

Uniform Bits-per-Key
Assigns the same bits-per-key to BF 
(per level)

Monkey Allocation
Shallow level assigns more 
bits-per-key than deeper 
level
R/W cost ratio is different
Policy can vary across level



Policy Propagation based on Cost Analysis 

Uniform Bits-per-Key
Assigns the same bits-per-key to BF 
(per level)

Monkey Allocation
Shallow level assigns more 
bits-per-key than deeper 
level
Infer remaining level policy based 
on the preceding two levels policy



Results



Experiment Design

Initial Data 
Load:

100 million kv 
entries

Key Size: 128B

Value Size: 896B

      Mission:
100 million operations

 (lookup or updates)

divided into 2000 mission

Hardware:
Intel Xeon Gold 
6326@2.9 GHz 
CPU, NVMe 
SSD, Ubuntu 
22.04 OS.



Baseline Comparison
• Aggressive Compaction (K = 1):

• low read cost
• high write amplification

• Lazy Compaction (K = 10):
• high read cost
• low write amplification

• Moderate Compaction (K = 5):
• Balance between aggressive and lazy
• moderate read/write amplification

  K
Max Number of 
sorted runs per level



Workload 
• Workload Types:

• read-heavy (10% update)
• balanced (50% update)
• write-heavy (90% update),
• write-inclined (70% update)
• read-inclined (30% update)

Each section includes 50 million operations which are divided into 1000 missions 
with 50000 operations for each.



Evaluation - Static Workload

Ruskey achieves the lowest latency per query across all static 
workloads as missions increase



Evaluation - Dynamic Workload

RusKey maintains near-optimal latency across all dynamic workload 
sessions, while other baselines exhibit sub-optimal performance in at 
least one session.

4x better than 
aggressive

2.4x better than 
moderate/3.5x 
better than Lazy



Ruskey Under Monkey Scheme

Compare RusKey with the baselines under the Monkey 
scheme with the same workload setting



Ruskey Under Monkey Scheme
A state-of-the art compaction policy 

Compare RusKey with the baselines under the Monkey 
scheme with the same workload setting



Ruskey Under Monkey Scheme

Ruskey and Lazy Leveling both achieve near-optimal performance, 
but Ruskey outperforms Lazy Leveling in every workload since it 
adopts novel policy setting through policy propagation

A state-of-the art compaction policy 



Compaction policy setting of RusKey

25 million operations of r/w balanced workload under the Monkey 
scheme 
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Compaction policy setting of RusKey

25 million operations of r/w balanced workload under the Monkey 
scheme 
Different Compaction policy at each level (Ruskey)

The running time of processing all the operation 



Compaction policy setting of RusKey

RusKey achieves optimal end-to-end and by-level latency by 
self-tuning its compaction policy under a balanced workload

The running time of processing all the operation 



Summary

Reinforcement 
Learning

Efficient 
Transitions

Reduce 
Required Data


