
Adaptive Radix Tree Indexes

By Tal Kronrod

ARTful Indexing for Main-Memory Databases
Viktor Leis, Alfons Kemper, Thomas Neumann

Why Do We Need Indexes?

Facilitate faster queries!

What are the main properties of indexes?

Small and fit in memory

Help avoid disk I/O

What are some examples of indexes?

Current State of Database Systems (2013)

Most databases can fit into memory!

CPUs bound performance Indexes are a CPU bottleneck

If the data fits in memory, do we even need
indexes? Why?

Cache Misses Are Still Expensive!

Indexes reduce cache misses

Better cache utilization = higher throughput

Current State-of-the-Art

Tree Based Indexes Hash Tables

What are some limitations of these structures?

Do we have a
problem?

Yes!

In that case: what
should our ideal data
structure be able to do?

1. Index structure that supports all

 primitive operations

2. Well tuned to modern hardware

3. Works well for in-memory databases

4. Separate worst-case performance

 from the size of the database

Radix Trees

What is a Radix Tree?

C

A

T R

Path to the lead node
represents the key

Span (s) = fanout in B+ Tree

What do primitive
operations look like?

C

A

T R

O

T

Insert CAT

Insert CAR

Insert COT

PQ CAR

PQ CON

RQ CAA-CAZ

Delete CAT

Radix: A Separation of Worst-Case Performance

Operations are bounded by the length
of the longest key rather than the size
of the database!

As our database grows, we will retain
consistent performance (unlike other
index structures).

s = Node span
k = Key length

What are the
Limitations of
Radix Trees

1. Inefficient for sparse data sets

2. Work poorly for long keys

3. Unbounded space consumption

Adaptive Radix Trees
(ART)

Features Radix
Trees Should
Have

1. Adaptively and efficiently chooses

the most compact internal node size

2. Collapse unnecessary inner nodes

3. Worst case space consumption is

bounded

Adaptive Inner Nodes

Adaptively and efficiently
chooses the most compact
internal node size

Balancing Span Size with Space Consumption

● We want to have a large span for
faster lookups

● Large spans lead to a lot of
unused space in intermediate
nodes

How would you balance these two?

Resizeable Nodes!

● Naive approach: resize on every
insert/delete

● Actually: have 4 fixed-sized nodes

● Use a span of 8 bits

○ Large fanout

○ Simplifies implementation
● 16 bit headers that store:

○ Node type

○ Number of children

○ Compressed path

Node4

● Stores up to 4 child pointers

● Keys are sorted

● Values are stored in

corresponding index of the key

Node16

● Stores between 5 - 16 children

● Same storage layout as Node4

● Can find keys using binary

search or parallel SIMD

comparisons on modern

hardware

Node48

● Keys are stored in a 256 byte
map that stores the index in the
value array

● Value array is 48 elements long

Is there a reason this node needs to be capped at 48?

Node256

● 256 byte array that directly
stores the pointers to the
subtrees

● A map!

Options for Leaf
Nodes

● Single-value leaves

● Multi-value leaves: Same as inner

nodes, but store values rather than

subtrees

● Combined pointer/value slots:

inner nodes can store both

subtrees and leaf values

Tree Compaction

Collapse unnecessary inner nodes

Consider this Radix Tree:

C

A

T R

A

R

T

Is space being used
efficiently?

Lazy Expansion

● Inner nodes are only created
when they need to distinguish
two or more leaf nodes

R

T

A

ART

E

Path Compression

● removes all inner nodes that
have only a single child

T

AR

E
R

T

A

E

How would you deal
with the removed
key nodes?

Pessimistic Approach

● Store a partial key vector
● Stores the keys of all previous

removed inner nodes

● Compare search key at all levels

● Store the count of removed
previous inner nodes

● Equal to the length of the vector

● Compare search key when a
“wrong turn” was taken

Optimistic Approach

What are the pros and cons of these approaches?

Bounded Space Consumption

Worst case space consumption is bounded

Worst-Case Space Consumption Per Node

What is the worst case scenario?

General Prefix Tree

Linux Kernel Radix Tree

Experimental Results

Experimental Setup

● Intel Core i7 3930K CPU
○ 6 cores, 12 threads, 3.2 GHz, 3.8

GHz turbo frequency
● 12MB shared, last-level cache
● 32GB quad-channel DDR3-1600 RAM
● 64bit Linux 3.2

● To execute TPC-C:
○ Integrated ART into HyPer

The Competition

● Cache sensitive B+ tree (CSB)

○ A B+ tree optimized for main-memory

● K-Ary Search Tree & Fast Architecture Sensitive Tree (FAST)

○ Read-only search indexes optimized for modern x86 CPUs

● General Prefix Tree (GPT)

● Classic Red-Black Tree (RB)

● Chained hash table (HT) using MurmurHash64A for 64-bit platforms

Microbenchmarks - Search Performance

Microbenchmarks - Cache Performance

Microbenchmarks - Caching/Skew Effects

Microbenchmarks - Cache Size

Microbenchmarks - Insertions/Updates

TPC-C Performance

Why do we see these drops?

TPC-C Space Consumption

TPC-C Lazy Expansion and Path Compression

Conclusion

● Solved the in-memory DB bottleneck

● Not as relevant today

Pros:

● Thorough problem definition
● Solution addresses every point

Cons:

● Narrow application
● Does not address multithreading
● Is not as effective on disk

Thank You!

