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Why Do We Need Indexes?

Facilitate faster queries!

What are the main properties of indexes?

Small and fit in memory

Help avoid disk I/O

What are some examples of indexes?



Current State of Database Systems (2013)

Most databases can fit into memory!

CPUs bound performance Indexes are a CPU bottleneck

If the data fits in memory, do we even need 
indexes? Why?



Cache Misses Are Still Expensive!

Indexes reduce cache misses

Better cache utilization = higher throughput



Current State-of-the-Art

Tree Based Indexes Hash Tables

What are some limitations of these structures?



Do we have a 
problem?

Yes!

In that case: what 
should our ideal data 
structure be able to do?

1.  Index structure that supports all   

      primitive operations

2.   Well tuned to modern hardware

3.   Works well for in-memory databases 

4.   Separate worst-case performance 

       from the size of the database



Radix Trees



What is a Radix Tree?
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Path to the lead node 
represents the key

Span (s) = fanout in B+ Tree



What do primitive 
operations look like?
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Insert CAT

Insert CAR

Insert COT

PQ CAR

PQ CON

RQ CAA-CAZ

Delete CAT



Radix: A Separation of Worst-Case Performance

Operations are bounded by the length 
of the longest key rather than the size 
of the database!

As our database grows, we will retain 
consistent performance (unlike other 
index structures). 

s = Node span
k = Key length



What are the 
Limitations of 
Radix Trees

1. Inefficient for sparse data sets

2. Work poorly for long keys

3. Unbounded space consumption



Adaptive Radix Trees 
(ART)



Features Radix 
Trees Should 
Have

1. Adaptively and efficiently chooses 

the most compact internal node size

2. Collapse unnecessary inner nodes

 

3. Worst case space consumption is 

bounded 



Adaptive Inner Nodes

Adaptively and efficiently 
chooses the most compact 
internal node size



Balancing Span Size with Space Consumption

● We want to have a large span for 
faster lookups

● Large spans lead to a lot of 
unused space in intermediate 
nodes

How would you balance these two?



Resizeable Nodes!

● Naive approach: resize on every 
insert/delete

● Actually: have 4 fixed-sized nodes

● Use a span of 8 bits

○ Large fanout

○ Simplifies implementation 
● 16 bit headers that store:

○ Node type

○ Number of children

○ Compressed path



Node4

● Stores up to 4 child pointers

● Keys are sorted

● Values are stored in 

corresponding index of the key



Node16

● Stores between 5 - 16 children

● Same storage layout as Node4

● Can find keys using binary 

search or parallel SIMD 

comparisons on modern 

hardware



Node48

● Keys are stored in a 256 byte 
map that stores the index in the 
value array

● Value array is 48 elements long

Is there a reason this node needs to be capped at 48?



Node256

● 256 byte array that directly 
stores the pointers to the 
subtrees

● A map!



Options for Leaf 
Nodes

● Single-value leaves

● Multi-value leaves: Same as inner 

nodes, but store values rather than 

subtrees

● Combined pointer/value slots: 

inner nodes can store both 

subtrees and leaf values



Tree Compaction

Collapse unnecessary inner nodes 



Consider this Radix Tree:
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Is space being used 
efficiently?



Lazy Expansion

● Inner nodes are only created 
when they need to distinguish 
two or more leaf nodes
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Path Compression

● removes all inner nodes that 
have only a single child
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How would you deal 
with the removed 
key nodes?



Pessimistic Approach

● Store a partial key vector
● Stores the keys of all previous 

removed inner nodes

● Compare search key at all levels

● Store the count of removed 
previous inner nodes

● Equal to the length of the vector

● Compare search key when a 
“wrong turn” was taken

Optimistic Approach

What are the pros and cons of these approaches?



Bounded Space Consumption

Worst case space consumption is bounded 



Worst-Case Space Consumption Per Node

What is the worst case scenario?



General Prefix Tree

Linux Kernel Radix Tree



Experimental Results



Experimental Setup

● Intel Core i7 3930K CPU 
○ 6 cores, 12 threads, 3.2 GHz, 3.8 

GHz turbo frequency
● 12MB shared, last-level cache 
● 32GB quad-channel DDR3-1600 RAM
● 64bit Linux 3.2

● To execute TPC-C:
○ Integrated ART into HyPer



The Competition

● Cache sensitive B+ tree (CSB)

○ A B+ tree optimized for main-memory

● K-Ary Search Tree & Fast Architecture Sensitive Tree (FAST)

○ Read-only search indexes optimized for modern x86 CPUs

● General Prefix Tree (GPT)

● Classic Red-Black Tree (RB)

● Chained hash table (HT) using MurmurHash64A for 64-bit platforms



Microbenchmarks - Search Performance



Microbenchmarks - Cache Performance



Microbenchmarks - Caching/Skew Effects



Microbenchmarks - Cache Size



Microbenchmarks - Insertions/Updates



TPC-C Performance

Why do we see these drops?



TPC-C Space Consumption



TPC-C Lazy Expansion and Path Compression



Conclusion

● Solved the in-memory DB bottleneck

● Not as relevant today

Pros:

● Thorough problem definition 
● Solution addresses every point

Cons:

● Narrow application
● Does not address multithreading
● Is not as effective on disk



Thank You!


