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Why Do We Need Indexes?
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Facilitate faster queries!

mEm .
o Y- -
EITmA. -

zone map

page 1

page 2

page 3

What are some examples of indexes?
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What are the main properties of indexes?
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Current State of Database Systems (2013)

Most databases can fit into memory!

CPUs bound performance Indexes are a CPU bottleneck

If the data fits in memory, do we even need
indexes? Why?



Cache Misses Are Still Expensive!

Indexes reduce cache misses

Better cache utilization = higher throughput

How fast is access?
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Current State-of-the-Art
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Tree Based Indexes Hash Tables

@ What are some limitations of these structures?




Do we have a
problem?

Yes!

In that case: what
should our ideal data
structure be able to do?

@ SJ 1. Index structure that supports all

L )

X

primitive operations

\ 2. Well tuned to modern hardware

3. Works well for in-memory databases

4. Separate worst-case performance

from the size of the database



Radix Trees



What is a Radix Tree?

Path to the lead node

Span (s) = fanout in B+ Tree
represents the key




What do primitive
operations look like?



Insert CAT

Insert CAR

Insert COT

PQ CAR

PQ CON

RQ CAA-CAZ

Delete CAT




Radix: A Separation of Worst-Case Performance

Operations are bounded by the length
of the longest key rather than the size
of the database!

As our database grows, we will retain
consistent performance (unlike other
index structures).
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Fig. 2. Tree height of perfectly balanced binary search trees and radix trees.

s = Node span
k = Key length



@ What are the 1. Inefficient for sparse data sets
Limitations of
Radix Trees

2. Work poorly for long keys

3. Unbounded space consumption




Adaptive Radix Trees
(ART)



Features Rale 1. Adaptively and efficiently chooses
Trees Should the most compact internal node size
Have

2. Collapse unnecessary inner nodes

3. Worst case space consumption is
bounded




Adaptive Inner Nodes

Adaptively and efficiently
chooses the most compact
internal node size



Balancing Span Size with Space Consumption
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Fig. 3. Tree height and space consumption for different values of the span
parameter s when storing 1M uniformly distributed 32 bit integers. Pointers
are 8 byte long and nodes are expanded lazily.

How would you balance these two?



Resizeable Nodes!

e Naive approach: resize on every e Use a span of 8 bits

insert/delete o Large fanout

o Simplifies implementation

e 16 bit headers that store;
Node type
e Actually: have 4 fixed-sized nodes ? yp
o Number of children

o Compressed path



Node/

e Stores up to 4 child pointers Node4 key

child pointer
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e Keys are sorted o[2]3 pss

e Values are stored in

corresponding index of the key



Stores between 5 - 16 children
Same storage layout as Node4
Can find keys using binary
search or parallel SIMD
comparisons on modern

hardware
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Node48  idindex child pointer

Keys are stored in a 256 byte . .
: : 01 2 3 .7 2557t L Ry ey g
map that stores the index in the o sl 7] = st Jomi

value array
Value array is 48 elements long

|s there a reason this node needs to be capped at 48?



Node256

e 256 byte array that directly 0 1T % 3 @& 5 & 255
stores the pointers to the ; —— C
subtrees /a\ VANIAY /A

e A map!



Options for Leaf
Nodes

Single-value leaves

Multi-value leaves: Same as inner
nodes, but store values rather than
subtrees

Combined pointer/value slots:
inner nodes can store both

subtrees and leaf values



Tree Compaction

Collapse unnecessary inner nodes



Consider this Radix Tree:

Is space being used
efficiently?




Lazy Expansion

e Inner nodes are only created
when they need to distinguish
two or more leaf nodes




Path Compression

e removes all inner nodes that
have only a single child

How would you deal
with the removed
key nodes?




Pessimistic Approach Optimistic Approach

e Store a partial key vector e Store the count of removed
e Stores the keys of all previous previous inner nodes

removed inner nodes e Equal to the length of the vector
e Compare search key at all levels e Compare search key when a

“wrong turn” was taken

@ What are the pros and cons of these approaches?



Bounded Space Consumption

Worst case space consumption is bounded



Worst-Case Space Consumption Per Node

TABLE I
SUMMARY OF THE NODE TYPES (16 BYTE HEADER, 64 BIT POINTERS).

Type Children Space (bytes)
Node4 2-4 16 +4+4-8 =52
Nodel®6 5-16 16 +16 + 16 - 8 = 160
Node48 17-48 | 16 + 256 + 48 - 8 = 656
Node256 49-256 16 + 256 - 8 = 2064

@ What is the worst case scenario?



TABLE II
WORST-CASE SPACE CONSUMPTION PER KEY (IN BYTES) FOR DIFFERENT
RADIX TREE VARIANTS WITH 64 BIT POINTERS.

k=32 | k— o0

ART 43 52

General Prefix Tree GPT 256 '®
Linux Kernel Radix Tree  LRT 2048 o0
KISS | >4096 NA.




Experimental Results



Experimental Setup

e Intel Corei7 3930K CPU e To execute TPC-C:
o 6 cores, 12 threads, 3.2 GHz, 3.8 o Integrated ART into HyPer
GHz turbo frequency

e 12MB shared, last-level cache

e [32GBJquad-channel DDR3-1600 RAM
e 64bit Linux 3.2 HyPer




The Competition

e Cache sensitive B+ tree (CSB)
o A B+ tree optimized for main-memory
e K-Ary Search Tree & Fast Architecture Sensitive Tree (FAST)
o Read-only search indexes optimized for modern x86 CPUs
e General Prefix Tree (GPT)
e Classic Red-Black Tree (RB)
e Chained hash table (HT) using MurmurHash64A for 64-bit platforms
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Fig. 10. Single-threaded lookup throughput in an index with 65K, 16M, and 256M keys.

Microbenchmarks - Search Performance




TABLE III

PERFORMANCE COUNTERS PER LOOKUP.

65K 16M
ART (d./s.) FAST HT |ART (d./s.) FAST HT
Cycles 40/105 94 44 188/352 461 191
Instructions [ 85/127] 75 26 88/99 110 26
Misp. Branches 0.0/0.85) 0.0 0.26 0.0/0.84 0.0 0.25
L3 Hits 0.65/1.9 47 2.2 [ 2.6/3.0] 25 21
L3 Misses 0.0/0.0 0.0 0.0 1.2/26 )] 24 24

Microbenchmarks - Cache Performance
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Microbenchmarks - Caching/Skew Effects
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TPC-C Performance
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TABLE IV
MAJOR TPC-C INDEXES AND SPACE CONSUMPTION PER KEY USING ART.

#|Relation | Cardinality | Attribute Types Space
1 |item 100,000 | int 8.1
2 | customer 150,000 | int,int,int 8.3
3 | customer 150,000 | int,int,varchar(16),varchar(16),TID | | 32.6
4 | stock 500,000 | int,int 8.1
5 | order 22,177,650 | int,int,int 8.1
6 | order 22,177,650 | int,int,int,int, TID 24.9
7 |orderline (221,712,415 | int,int,int,int 16.8

TPC-C Space Consumption
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Fig. 17. Impact of lazy expansion and path compression on the height of
the TPC-C indexes.

TPC-C Lazy Expansion and Path Compression




Conclusion

e Solved the in-memory DB bottleneck  Pros:

e Thorough problem definition

Solution addresses every poin
e Not as relevant today ° y point

Cons:

e Narrow application
e Does not address multithreading
e Is not as effective on disk



Thank You!



