Adaptive Radix Tree Indexes

By Tal Kronrod

ARTful Indexing for Main-Memory Databases
Viktor Leis, Alfons Kemper, Thomas Neumann

Why Do We Need Indexes?

page0 | 3 16 34 31 21

Facilitate faster queries!

mEm .
o Y- -
EITmA. -

zone map

page 1

page 2

page 3

What are some examples of indexes?

file

What are the main properties of indexes?

|? iLisaSmith I+1-555-8976 I Small and ﬂt in memory

872

873 | John Smith [+1-555-1234 Index on gpa
874 | Sandra Dee |+1-555-9655 1 1

: Help avoid disk 1/0
998 [samDoe [+1-555-5030 |

Sandra D |999 I

[12]]1.7]]1.8] |19)] 2 [{22] |24] |25]|27] |28]|29]] 3 | |32] |3:3] |3.4] |3:5] |=.6] |s.8] |as]]

Current State of Database Systems (2013)

Most databases can fit into memory!

CPUs bound performance Indexes are a CPU bottleneck

If the data fits in memory, do we even need
indexes? Why?

Cache Misses Are Still Expensive!

Indexes reduce cache misses

Better cache utilization = higher throughput

How fast is access?

Access latency

Memory type

Scaling up

1ns

CPU/register

1s

4 ns

on-chip cache

4s

10 ns

on-board cache

10 s

[100 ns

DRAM

f
100 s y

16,000 ns

SSD

4.44 hoursJ

2,000,000 ns

HDD

3.3 weeks

1,000,000,000 ns

Tape

31.7 years

Current State-of-the-Art

John Smith

Lisa Smith

+1-555-8976

872

873 | John Smith +1-555-1234
874 | Sandra Dee +1-555-9655
998 | Sam Doe +1-555-5030
55
Tree Based Indexes Hash Tables

@ What are some limitations of these structures?

Do we have a
problem?

Yes!

In that case: what
should our ideal data
structure be able to do?

@ SJ 1. Index structure that supports all

L)

X

primitive operations

\ 2. Well tuned to modern hardware

3. Works well for in-memory databases

4. Separate worst-case performance

from the size of the database

Radix Trees

What is a Radix Tree?

Path to the lead node

Span (s) = fanout in B+ Tree
represents the key

What do primitive
operations look like?

Insert CAT

Insert CAR

Insert COT

PQ CAR

PQ CON

RQ CAA-CAZ

Delete CAT

Radix: A Separation of Worst-Case Performance

Operations are bounded by the length
of the longest key rather than the size
of the database!

As our database grows, we will retain
consistent performance (unlike other
index structures).

perfect BST,

ree height

t
x X
—
o
L1

radix tree (s=4)

/ radix tree (s=8)

T T T T
0 2(k/3) 2(k/4) ok

tree size in # keys (log scale)

Fig. 2. Tree height of perfectly balanced binary search trees and radix trees.

s = Node span
k = Key length

@ What are the 1. Inefficient for sparse data sets
Limitations of
Radix Trees

2. Work poorly for long keys

3. Unbounded space consumption

Adaptive Radix Trees
(ART)

Features Rale 1. Adaptively and efficiently chooses
Trees Should the most compact internal node size
Have

2. Collapse unnecessary inner nodes

3. Worst case space consumption is
bounded

Adaptive Inner Nodes

Adaptively and efficiently
chooses the most compact
internal node size

Balancing Span Size with Space Consumption

s=1
e We want to have a large span for ok i
faster lookups %24-
e Large spans lead to a lot of o6+ 67
. - 2 &GPT (524
unused space in intermediate g4 e ST (so)
® ® os-8 S=12s=14 s=16
nodes 1 L ART o 85-32

1 1 1 T 1
32MB 128MB 512MB 2GB 8GB 32GB

space consumption (log scale)

Fig. 3. Tree height and space consumption for different values of the span
parameter s when storing 1M uniformly distributed 32 bit integers. Pointers
are 8 byte long and nodes are expanded lazily.

How would you balance these two?

Resizeable Nodes!

e Naive approach: resize on every e Use a span of 8 bits

insert/delete o Large fanout

o Simplifies implementation

e 16 bit headers that store;
Node type
e Actually: have 4 fixed-sized nodes ? yp
o Number of children

o Compressed path

Node/

e Stores up to 4 child pointers Node4 key

child pointer

N
3

I I I I
Y Y Y Y

A AL /A

e Keys are sorted o[2]3 pss

e Values are stored in

corresponding index of the key

Stores between 5 - 16 children
Same storage layout as Node4
Can find keys using binary
search or parallel SIMD
comparisons on modern

hardware

child pointer

N\

o |
o |

Node48 idindex child pointer

Keys are stored in a 256 byte . .
: : 01 2 3 .7 2557t L Ry ey g
map that stores the index in the o sl 7] = st Jomi

value array
Value array is 48 elements long

|s there a reason this node needs to be capped at 48?

Node256

e 256 byte array that directly 0 1T % 3 @& 5 & 255
stores the pointers to the ; —— C
subtrees /a\ VANIAY /A

e A map!

Options for Leaf
Nodes

Single-value leaves

Multi-value leaves: Same as inner
nodes, but store values rather than
subtrees

Combined pointer/value slots:
inner nodes can store both

subtrees and leaf values

Tree Compaction

Collapse unnecessary inner nodes

Consider this Radix Tree:

Is space being used
efficiently?

Lazy Expansion

e Inner nodes are only created
when they need to distinguish
two or more leaf nodes

Path Compression

e removes all inner nodes that
have only a single child

How would you deal
with the removed
key nodes?

Pessimistic Approach Optimistic Approach

e Store a partial key vector e Store the count of removed
e Stores the keys of all previous previous inner nodes

removed inner nodes e Equal to the length of the vector
e Compare search key at all levels e Compare search key when a

“wrong turn” was taken

@ What are the pros and cons of these approaches?

Bounded Space Consumption

Worst case space consumption is bounded

Worst-Case Space Consumption Per Node

TABLE I
SUMMARY OF THE NODE TYPES (16 BYTE HEADER, 64 BIT POINTERS).

Type Children Space (bytes)
Node4 2-4 16 +4+4-8 =52
Nodel®6 5-16 16 +16 + 16 - 8 = 160
Node48 17-48 | 16 + 256 + 48 - 8 = 656
Node256 49-256 16 + 256 - 8 = 2064

@ What is the worst case scenario?

TABLE II
WORST-CASE SPACE CONSUMPTION PER KEY (IN BYTES) FOR DIFFERENT
RADIX TREE VARIANTS WITH 64 BIT POINTERS.

k=32 | k— o0

ART 43 52

General Prefix Tree GPT 256 '®
Linux Kernel Radix Tree LRT 2048 o0
KISS | >4096 NA.

Experimental Results

Experimental Setup

e Intel Corei7 3930K CPU e To execute TPC-C:
o 6 cores, 12 threads, 3.2 GHz, 3.8 o Integrated ART into HyPer
GHz turbo frequency

e 12MB shared, last-level cache

e [32GBJquad-channel DDR3-1600 RAM
e 64bit Linux 3.2 HyPer

The Competition

e Cache sensitive B+ tree (CSB)
o A B+ tree optimized for main-memory
e K-Ary Search Tree & Fast Architecture Sensitive Tree (FAST)
o Read-only search indexes optimized for modern x86 CPUs
e General Prefix Tree (GPT)
e Classic Red-Black Tree (RB)
e Chained hash table (HT) using MurmurHash64A for 64-bit platforms

65K 16M 256M

20 = 10.0 =

- 90 = - dense o . dense o . dense
5 sparse S 15 = sparse & 75= sparse
3] 3] 3]
? 3 @
‘% 60 - @ @
o o 10 = o 50=-
3 3 3
= = =
S 5 5
) I = 1h.rl) I

0 - I m 1 0= - 0.0 =

1 1 || I |
ART GPT RB CSB kary FAST HT ART GPT RB CSB kary FAST HT ART kary FAST HT

(GPT and CSB crashed)

Fig. 10. Single-threaded lookup throughput in an index with 65K, 16M, and 256M keys.

Microbenchmarks - Search Performance

TABLE III

PERFORMANCE COUNTERS PER LOOKUP.

65K 16M
ART (d./s.) FAST HT |ART (d./s.) FAST HT
Cycles 40/105 94 44 188/352 461 191
Instructions [85/127] 75 26 88/99 110 26
Misp. Branches 0.0/0.85) 0.0 0.26 0.0/0.84 0.0 0.25
L3 Hits 0.65/1.9 47 2.2 [2.6/3.0] 25 21
L3 Misses 0.0/0.0 0.0 0.0 1.2/26)] 24 24

Microbenchmarks - Cache Performance

100 =
- ART
C
S 75+
o
L
8 50 =
2
S HT
D 25
= ——>
IO I o i el FAST
1 1 1 1 1
0.25 0.50 0.75 1.00 1.25

Zipf parameter s (skew)

Microbenchmarks - Caching/Skew Effects

20 =
- HT
| @
8 15 =
()
LY
wn
Q 10 = AR
X
(@]
= S-M
=
0—

| I T T | | T
192KB 384KB 768KB 1.5MB 3MB__6MB 12MB

effective cache size (log scale)

Microbenchmarks - Cache Size

15 =
g - dense
O sparse
210 -
8
@
g 5-
O —
I i 1
ART ART GPT R CSB
(bulk) (bulk)

Microbenchmarks - Insertions/Updates

TPC-C Performance

200,000 =

150,000 =

100,000 =

50,000 =

transactions/second

ART

i e P

J +RB

h%

T T I I
10M 20M 30M 40M

TPC-C transactions

Why do we see these drops?

I
50M

TABLE IV
MAJOR TPC-C INDEXES AND SPACE CONSUMPTION PER KEY USING ART.

#|Relation | Cardinality | Attribute Types Space
1 |item 100,000 | int 8.1
2 | customer 150,000 | int,int,int 8.3
3 | customer 150,000 | int,int,varchar(16),varchar(16),TID | | 32.6
4 | stock 500,000 | int,int 8.1
5 | order 22,177,650 | int,int,int 8.1
6 | order 22,177,650 | int,int,int,int, TID 24.9
7 |orderline (221,712,415 | int,int,int,int 16.8

TPC-C Space Consumption

default
- +lazy expansion

. +path compression
10 = L
o m
| | | | |
1

tree height

I I
2 3 4 5 6 7

index #

Fig. 17. Impact of lazy expansion and path compression on the height of
the TPC-C indexes.

TPC-C Lazy Expansion and Path Compression

Conclusion

e Solved the in-memory DB bottleneck Pros:

e Thorough problem definition

Solution addresses every poin
e Not as relevant today ° y point

Cons:

e Narrow application
e Does not address multithreading
e Is not as effective on disk

Thank You!

