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Indexing

What do these indexing techniques have in common?



The Need for Adaptive Indexing
Adaptive Radix Tree 

(ART)

Adaptive Merging

Cracking

Hybrid Cracking

Predictive Adaptive 
Indexing



History of Adaptive Indexing

2013

Adaptive Radix Tree was 
presented at ICDE

2018

Adaptive Adaptive 
Indexing was presented 
and published at ICDE

2000s

Column-store research 
and Commercial 
column-stores took off

2007

S. Idreos, 
M. L. Kersten,
S. Manegold
“Database cracking” 
CIDR



What is cracking?

Q0,Q1,Q2,...,Qn

Q=[low,high)



Standard cracking

Variable 
query performance

Slow 
convergence speed

Weak 
robustness

Limitations



Stochastic cracking
Variable 

query performance

Slightly better 
convergence speed

Strong 
robustness



Hybrid Cracking
Variable 

query performance

Fast
convergence speed

Decent
robustness



Cracking Overview

Cracking Variance in Query 
Performance

Convergence Speed Robustness

Standard High Slow Weak

Stochastic High Medium Strong

Hybrid High Fast Medium

Can we get all the benefits in 1 cracking algorithm?



Design Principles of Cracking

Cracking

Redistribute 
indexing effort 

over query 
sequence

Data 
partitioning



Radix based partitioning (1 bit)
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Radix based partitioning (2 bits)
5: 1  0  1

3: 0  1  1

1: 0  0  1

7: 1  1  1

0: 0  0  0

6: 1  1  0

4: 1  0  0

2: 0  1  0

Base table 
keys

1  0  1
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0  0  1
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1  1  1

1 0

0 0

Index 
column

Histogram

0 1

1 1



Fanout (partition-in-k)

Is there a pattern?

2K PartitionsK bits per key



Meta-Adaptive Indexing Strategy



What is Meta-Adaptivity?

Classical 
Adaptivity

Choose k before starting, and 
every time the partitioning 
algorithm is used, create k 
more partitions

Meta
Adaptivity

Adjust k based on the size of 
the input partition



How do we adjust k?

For the first query: Set k to a high number and reduce the 
partition size drastically

For subsequent queries: With a decrease in input partition 
size, increase the fanout k. If the input partition is small 
enough, just sort the partition
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Issue with Radix Partitioning

Cracking splits the column according to the query 
predicates, while radix uses the bits of the key.

What issue can this cause when searching for keys in a 
ranged query using radix?



Issue with Radix Partitioning

Cracking splits the column according to the query 
predicates, while radix uses the bits of the key.

What issue can this cause when searching for keys in a 
ranged query using radix?

For radix you have to search multiple partitions that may or 
may not have the key. However, this cost increase is 
negligible when compared to the benefits of radix



Handling First Query
5: 1  0  1

3: 0  1  1

1: 0  0  1

7: 1  1  1

0: 0  0  0

6: 1  1  0

4: 1  0  0

2: 0  1  0

Base table 
keys

Input 
for 
First 
Query

Out-of-place 
Radix 
Partitioning
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1  1  0

0  0  1

0  1  1
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Out-of-place Radix Partitioning w/ SW buffer



Out-of-place Radix Partitioning w/ SW buffer



Out-of-place Radix Partitioning w/ SW buffer



Handling Subsequent Queries

Input for 
Subsequent 
Queries

1  0  1

1  1  0

0  0  1

0  1  1

1  0  0

1  1  1

0  1  0

0  0  0

1

0

Index 
column

Can we still do 
out-of-place? 
If not, why?



Handling Subsequent Queries

Input for 
Subsequent 
Queries
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1
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Index 
column

Use In-place 
Radix 
Partitioning



In-place Radix Partitioning
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In-place Radix Partitioning
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In-place Radix Partitioning
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In-place Radix Partitioning
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In-place Radix Partitioning
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In-place Radix Partitioning
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In-place Radix Partitioning
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Evaluation of Radix vs Crack-in-2 partitioning

Key Takeaway: We can set 
k to a very high value 
(1024) and runtime cost 
increase will be minimal



Evaluation of Radix vs Crack-in-2 partitioning

Key Takeaway: As input 
partition size 
increases, the 
additional runtime cost 
of setting a higher k 
also increases.



Defining the Adaptive Fanout Function

The adaptive fanout function f(s,q) will take the input 
partition size (s) and query sequence number (q) as inputs, 
and output the number of fanout bits.

What predefined values or thresholds do we need before we 
mathematically define the function?



Defining the Adaptive Fanout Function

The adaptive fanout function f(s,q) will take the input 
partition size (s) and query sequence number (q) as inputs, 
and output the number of fanout bits.

What predefined values or thresholds do we need before we 
mathematically define the function?



Adapting Fanout Function



Adapting Fanout Function



Adapting Fanout Function



Adapting Fanout Function



Input Skew

What is the problem with a 
scenario like this?

And how would you solve it?



Diffusing Input Skew

If an output partition is 
greater than a threshold, 
it is marked for further 
partitioning



Diffusing Input Skew

A histogram is built for 
each skewed partition as 
the keys are being 
transferred



Diffusing Input Skew

Recursively partition 
each skewed partition 
until all of the 
partitions are below the 
threshold



Summary of Meta-Adaptivity

Meta-Adaptivity adjusts partitioning fanout based on input 
partition size

It uses Radix Partitioning which gives us higher throughput 
and faster convergence for minimal cost

Input skew is diffused using recursive partitioning



Experiments



Baselines

● Great under uniform random workloads
● Suffers from sequential workloadsStandard cracking

Review: What limitations does standard cracking have?



Baselines

● Introduces randomness and decouples 
partitioning from queriesStochastic cracking
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Baselines

Hybrid cracking ● A class of techniques aiming to 
improve convergence

● Introduces randomness and decouples 
partitioning from queriesStochastic cracking

● Great under uniform random workloads
● Suffers from sequential workloadsStandard cracking



Baselines

Hybrid cracking

● Extreme cases
● Full sorting and no sorting

● A class of techniques aiming to 
improve convergence

● Introduces randomness and decouples 
partitioning from queries

Sort + Search

Scan

Stochastic cracking

● Great under uniform random workloads
● Suffers from sequential workloadsStandard cracking



Yes!
Can the meta-adaptive index emulate our baselines?



Emulation (1/3)

bfirst

bmin 

bmax

tadapt 

tsort

= 1

= 1

= 1

= 0

= 0

How do we emulate standard cracking?

Standard cracking

Ti
me
 s

pe
nt

Query progress

Emulation



bfirst

bmin 

bmax

tadapt 

tsort

= 0

= 0

= 0

= 0

= 100%

How do we emulate a fully sorted index?

Full Sort
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Query progress

Emulation

Emulation (2/3)



bfirst

bmin 

bmax

tadapt 

tsort

= 10

= 1

= 1

= 0

= 0

What if we want to include 1024 partitions initially?

Granular Index 1K
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Query progress

Emulation

Emulation (3/3)



Testing Response Times



Key distributions

Uniform
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Normal

Key domain
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Random

Skew

Periodic

Sequential

Zoom out alt.

Zoom in alt.

Range query sequence
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Upper bound
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Uniform

Standard cracking

Stochastic cracking

Hybrid crack-sort

Full sort

Meta-adaptive (manual)

Query number

La
te

nc
y 
(m
s)

Is meta-adaptive slower?



Zipf

Standard cracking

Stochastic cracking

Hybrid crack-sort

Full sort

Meta-adaptive (manual)

Query number
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te

nc
y 
(m
s)

Why is it slower on Zipf?
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Normal

Standard cracking

Stochastic cracking

Hybrid crack-sort

Full sort

Meta-adaptive (manual)



Tuning

How do we tune our parameters?

Simulated Annealing!



Simulated Annealing

Simulated annealing approximates global 
optimum through a stochastic procedure

What does annealing refer to in “real” life?



Simulated Annealing

Accept a new configuration with 
probability e-dQRT/temp

Decrease temperature over time

Can you think of a limitation of this method?



Simulated Annealing

Parameter Uniform Normal Zipf

bfirst 12 bits 10 5

bmin 2 bits 1 3

bmax 5 bits 5 5

tadapt 218MB 102 211

tsort 354KB 32 32

skewtol 4x 5 5



Cumulative Latency

Standard cracking

Stochastic cracking

Hybrid crack-sort

Meta-adaptive (manual)

Meta-adaptive (auto)

Random Skewed PeriodicSequential
Zoom out Zoom in
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 (
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Conclusion

Fanout in k is a versatile enough mechanism to emulate other 
cracking algorithms

The “meta-adaptive” index performs better than alternative 
cracking algorithms by better distributing its efforts 



Commentary
What we think

Binyamin: I do not think “meta-adaptive” 
is a good characterization of their 
technique. In addition, there could have 
been more index comparisons.

Arun: The paper does a great job 
generalizing various cracking methods, 
but the title is misleading as it does 
not encompass all adaptive indexing 
techniques.

Parthiv: The paper mentions input 
variance in the beginning and that 
Adaptive Adaptive Indexing will be 
better on it, but this is not explicitly 
backed up during the mathematical 
analysis and experiment section.



Thank you! Questions?


