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What do these 1indexing techniques have in common?




The Need for Adaptive Indexing
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History of Adaptive Indexing

Column-store research

and Commercial Adaptive Radix Tree was
column-stores took off presented at ICDE
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“Database cracking”
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What is cracking?
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Standard cracking

Limitations
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Stochastic cracking
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Hybrid Cracking
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Cracking Overview

Cracking Variance in Query Convergence Speed Rohustness
Performance

Standard High Slow Weak

Stochastic High Medium Strong

Hybrid High Fast Medium

Can we get all the benefits in 1 cracking algorithm?




Design Principles of Cracking




Radix based partitioning (1 bit)

Base table Histogram Index
keys column



Radix based partitioning (2 bits)
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Fanout (partition-in-k)

Is there a pattern?




Meta-Adaptive Indexing Strategy




What is Meta-Adaptivity?

Choose k before starting, and

Classical every time the partitioning
Adaptivity - algorithm is used, create k

more partitions

Meta o ‘ Adjust k based on the size of
Adaptivity the input partition




How do we adjust k?

For the first query: Set k to a high number and reduce the
partition size drastically



How do we adjust k?

For the first query: Set k to a high number and reduce the
partition size drastically

For subsequent queries: With a decrease 1in 1dinput partition
size, increase the fanout k. If the input partition is small
enough, just sort the partition



Issue with Radix Partitioning

Cracking splits the column according to the query
predicates, while radix uses the bits of the key.

What issue can this cause when searching for keys 1in a
ranged query using radix?



Issue with Radix Partitioning

Cracking splits the column according to the query
predicates, while radix uses the bits of the key.

What issue can this cause when searching for keys 1in a
ranged query using radix?

For radix you have to search multiple partitions that may or
may not have the key. However, this cost increase 1is
negligible when compared to the benefits of radix



Handling First Query

Input Out-of-place
for - Radix

First Partitioning
Query

Base table Index
keys column



Out-of-place Radix Partitioning w/ SW buffer
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Out-of-place Radix Partitioning w/ SW buffer
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Out-of-place Radix Partitioning w/ SW buffer
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Handling Subsequent Queries

Input for Can we still do
Subsequent ‘ out-of-place?
Queries If not, why?

Index
column



Handling Subsequent Queries
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In-place Radix Partitioning
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In-place Radix Partitioning
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In-place Radix Partitioning
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In-place Radix Partitioning
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Evaluation of Radix vs Crack-in-2 partitioning
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Evaluation of Radix vs Crack-in-2 partitioning
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Defining the Adaptive Fanout Function

The adaptive fanout function f(s,q) will take the -input
partition size (s) and query sequence number (q) as inputs,
and output the number of fanout bits.



Defining the Adaptive Fanout Function

The adaptive fanout function f(s,q) will take the -input
partition size (s) and query sequence number (q) as inputs,
and output the number of fanout bits.

What predefined values or thresholds do we need before we
mathematically define the function?



Adapting Fanout Function

btirst = number of fanout bits for first query

(bﬁrst lfq = O
f(37Q) —




Adapting Fanout Function

tadapt = threshold below which fanout adaption starts

bmin = minimal number of fanout bits during adaption

( bﬁrst if q — 0
bmin else if s > tadapt

f(s,q) =




Adapting Fanout Function

tsort = threshold below which sorting is triggered

bmax = Maximal number of fanout bits during adaption

f(s,q) = 4

( bﬁrst if q — 0
bmin else if s > t,qapt
bmin + [(bmax — bmin) ’ (1 — S/tadapt)_l else if s > tsort

\



Adapting Fanout Function

bs,r+ = number of fanout bits required for sorting

(bﬁrst if q=20
~J bmin else if s > t,qapt
f(S, Q) N < bmin + ((bmax — bmin) ’ (]- — S/tadaptﬂ else if s > tsort
\bsort else.



Input Skew

Input
00

What is the problem with a
scenario like this?

And how would you solve 1it?

1. Histogram

o
10
11
2
5

S0
3
pry
o




Diffusing Input Skew

If an output partition is
greater than a threshold,
it 1s marked for further
partitioning
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Diffusing Input Skew
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Diffusing Input Skew

Recursively partition
each skewed partition
until all of the
partitions are below the
threshold
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Summary of Meta-Adaptivity

r )
Meta-Adaptivity adjusts partitioning fanout based on input

partition size
\ y,
e )

It uses Radix Partitioning which gives us higher throughput

and faster convergence for minimal cost
. J
é )

Input skew is diffused using recursive partitioning

\ J




Experiments




Baselines

[Standard cracking

e Great under uniform random workloads J

Review: What limitations does standard cracking have?



Baselines

-
e Great under uniform random workloads

Standard cracking Suffers from sequential workloads

-

-
e Introduces randomness and decouples

Stochastic crack ng partitioning from queries
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Standard cracking

Great under uniform random workloads
Suffers from sequential workloads
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Stochastic cracking

Introduces randomness and decouples
partitioning from queries

Vs

-

Hybrid cracking

A class of techniques aiming to
improve convergence




Baselines

Sort + Search
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Extreme cases
Full sorting and no sorting




Yes!

Can the meta-adaptive index emulate our baselines?
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How do we emulate standard cracking?



Emulation @3

Full Sort
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How do we emulate a fully sorted index?



Emulation @13
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to include 1024 partitions initially?



Testing Response Times
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Tuning

Simulated Annealing!



Simulated Annealing

Simulated annealing approximates global
optimum through a stochastic procedure

What does annealing refer to in “real” life?



Simulated Annealing

Accept a new configurat
probability e dRT/temp

Decrease temperature over ti

Can you think of a limitation of this method?



Simulated Annealing
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Cumulative Latency
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Conclusion

4 )
Fanout 1n k is a versatile enough mechanism to emulate other

cracking algorithms
. J

( )
The “meta-adaptive” index performs better than alternative

cracking algorithms by better distributing its efforts )
.




Commentary

What we think

Binyamin: I do not think “meta-adaptive”
is a good characterization of their
technique. In addition, there could have
been more index comparisons.

Arun: The paper does a great job
generalizing various cracking methods,
but the title is misleading as it does
not encompass all adaptive indexing
techniques.

Parthiv: The paper mentions -input
variance 1in the beginning and that
Adaptive Adaptive Indexing will be
better on it, but this 1is not explicitly
backed up during the mathematical
analysis and experiment section.




Thank you! Questions?




