Adaptive Adaptive Indexing

Felix Martin Schuhknecht, Jens Dittrich, Laurent Linden

Arun Shrestha, Parthiv Ganguly, Binyamin Friedman

Indexing

v

N\

>

16

46

Identifier

1

DO =W

Gender

Female
Female
Male
Male
Female
Male

O= 00 =-T7

Bitmaps

— O == =20=2

hash
keys function
00
, 01
John Smith
02
03
Lisa Smith
13
Sandra Dee
 T—» 14
15

buckets

521-8976

521-1234

521-9655

What do these 1indexing techniques have in common?

The Need for Adaptive Indexing

Country Product Sales
us Alpha 3,000
us Beta 1,250
P Alpha 700
UK Alpha 450
us us
Alpha us
3,000 ”P
UK
us
Beta Product Alpha
1,250 Beta
Alpha
JP
Alpha Alpha
700 3000
1,250
UK 700
Alpha 450
450

Row-based storage Column-based storage

History of Adaptive Indexing

Column-store research

and Commercial Adaptive Radix Tree was
column-stores took off presented at ICDE
2007 2018
2000s 2013
Adaptive Adaptive

S. Idreos, Indexing was presented
M. L. Kersten, and published at ICDE
S. Manegold

“Database cracking”
CIDR

What is cracking?

Index
Column

Q@)Qlana oo aQn

Q=[low,high) ?

Standard cracking

Limitations

Index Index Index Index
Column Column Column

>=13

© Qeema) | T Ql_[e | <7 [q.qe

Stochastic cracking

A Index Column (A)

13 1. random crack at 8 6
16 2. select A 3
from R
where A >= 10 4
and A < 14
o | 1
2 2
20 /S A<8)| T | Slightly better
7 paek| 8 convergence speed
1 a<10| 9
B [S
19 %g 10 <= A | 13
3 (‘5‘3,5 12
14 A< 14| 11
........... [S SEE
11 14 <=2 | 14
16
19

Hybrid Cracking

A

13
16

Input Column (A)

4
select A
from R 9
where A >= 10
and A < 14 2
J 17 Final
_g 5 13 Column
23 12 [(A)
---------- o Qe
12
select A
from R 1 @ 11
where A >= 10 3 &
and A < 14 I/
> | 6
8
.......... ES TR
43 3 11
1] — Tio |
19
14

Cracking Overview

Cracking Variance in Query Convergence Speed Rohustness
Performance

Standard High Slow Weak

Stochastic High Medium Strong

Hybrid High Fast Medium

Can we get all the benefits in 1 cracking algorithm?

Design Principles of Cracking

Radix based partitioning (1 bit)

Base table Histogram Index
keys column

Radix based partitioning (2 bits)

Count

‘ ’ ‘
|]_l_ll
0
10 01 11 00

Base table Histogram Index
keys column

Fanout (partition-in-k)

Is there a pattern?

Meta-Adaptive Indexing Strategy

What is Meta-Adaptivity?

Choose k before starting, and

Classical every time the partitioning
Adaptivity - algorithm is used, create k

more partitions

Meta o ‘ Adjust k based on the size of
Adaptivity the input partition

How do we adjust k?

For the first query: Set k to a high number and reduce the
partition size drastically

How do we adjust k?

For the first query: Set k to a high number and reduce the
partition size drastically

For subsequent queries: With a decrease 1in 1dinput partition
size, increase the fanout k. If the input partition is small
enough, just sort the partition

Issue with Radix Partitioning

Cracking splits the column according to the query
predicates, while radix uses the bits of the key.

What issue can this cause when searching for keys 1in a
ranged query using radix?

Issue with Radix Partitioning

Cracking splits the column according to the query
predicates, while radix uses the bits of the key.

What issue can this cause when searching for keys 1in a
ranged query using radix?

For radix you have to search multiple partitions that may or
may not have the key. However, this cost increase 1is
negligible when compared to the benefits of radix

Handling First Query

Input Out-of-place
for - Radix

First Partitioning
Query

Base table Index
keys column

Out-of-place Radix Partitioning w/ SW buffer

Cache ~ Output
..3;
: 42
¢ —
k- 4 partition buffer ; N
b-2entnes
...........................
Factor b less
trips to main

memory k partitions

Out-of-place Radix Partitioning w/ SW buffer

~ Output

Factor b less
trips to main

memory

..............

k partitions

Out-of-place Radix Partitioning w/ SW buffer

Input Cache

38 | Wi e et ey
5% ‘ SW buffer

T N -

78 :

18 k- 4 partition buffer
85 b2 entries

28

5 Factor b less

47 trips to main

memory k partitions

Handling Subsequent Queries

Input for Can we still do
Subsequent ‘ out-of-place?
Queries If not, why?

Index
column

Handling Subsequent Queries

Input for Use In-place
Subsequent ‘ ‘ Radix
Queries Partitioning

- <

Index
column

In-place Radix Partitioning

- <

Index Index
column column

In-place Radix Partitioning

A A A A
r A4 A4 A4 N

Index
column

In-place Radix Partitioning

A A A A
r A4 A4 A4 N

Index
column

In-place Radix Partitioning

A A A A
r A4 A4 A4 N

Index
column

In-place Radix Partitioning

A A A A
r A4 A4 A4 N

Index
column

In-place Radix Partitioning

A A A A
r A4 A4 A4 N

Index
column

In-place Radix Partitioning

A A A A
r A4 A4 A4 N

Index
column

Evaluation of Radix vs Crack-in-2 partitioning

45 T T r y - v r Y T T T
Out-al-place crack-in-two 4 In-place crack-in-two ssessen

Key Takeaway: We can set _' | Out-of-piace radix partitioning M.
k to a very high value as|
(1024) and runtime cost a f
increase will be minimal

Runsme in (5]

st
o~
o

163
32763

Partitioning Fanout

Evaluation of Radix vs Crack-in-2 partitioning

Input data size

Key Takeaway: As -input - 32KB (L1) 256KB (L2) 2MB (Page) 10MB (L3)
T ' Zxinpacecackiniw mmm '
part—lt—lon S_ize 2 x In-place radix partitoning I
30 F : i
increases, the el
additional runtime cost 5 :
20 :
of setting a higher k E
. s 15} :
also 1increases. ¢ ;
10
0 IR - n——-__-__l

4 32 512 4 32 512 4 32 512 4 32 512
Partitioning Fanout

Defining the Adaptive Fanout Function

The adaptive fanout function f(s,q) will take the -input
partition size (s) and query sequence number (q) as inputs,
and output the number of fanout bits.

Defining the Adaptive Fanout Function

The adaptive fanout function f(s,q) will take the -input
partition size (s) and query sequence number (q) as inputs,
and output the number of fanout bits.

What predefined values or thresholds do we need before we
mathematically define the function?

Adapting Fanout Function

btirst = number of fanout bits for first query

(bﬁrst lfq = O
f(37Q) —

Adapting Fanout Function

tadapt = threshold below which fanout adaption starts

bmin = minimal number of fanout bits during adaption

(bﬁrst if q — 0
bmin else if s > tadapt

f(s,q) =

Adapting Fanout Function

tsort = threshold below which sorting is triggered

bmax = Maximal number of fanout bits during adaption

f(s,q) = 4

(bﬁrst if q — 0
bmin else if s > t,qapt
bmin + [(bmax — bmin) ’ (1 — S/tadapt)_l else if s > tsort

\

Adapting Fanout Function

bs,r+ = number of fanout bits required for sorting

(bﬁrst if q=20
~J bmin else if s > t,qapt
f(S, Q) N < bmin + ((bmax — bmin) ’ (]- — S/tadaptﬂ else if s > tsort
\bsort else.

Input Skew

Input
00

What is the problem with a
scenario like this?

And how would you solve 1it?

1. Histogram

o
10
11
2
5

S0
3
pry
o

Diffusing Input Skew

If an output partition is
greater than a threshold,
it 1s marked for further
partitioning

S0

7 10
11

1. Histogram

Input

00

Diffusing Input Skew

- g Pation 1"
A histogram 1is built for v | e
each skewed partition as i

the keys are being

transferred

1. Histogram

S0t
7 10

1

Diffusing Input Skew

Recursively partition
each skewed partition
until all of the
partitions are below the
threshold

1. Histogram

o
S0
2

7 10
.,_121

bfirst=2 bits
+
Histogram

Index

Jolumn

3.
Partition
in-place

on

bmin—4 bits

Index

Jolumn

Summary of Meta-Adaptivity

r)
Meta-Adaptivity adjusts partitioning fanout based on input

partition size
\ y,
e)

It uses Radix Partitioning which gives us higher throughput

and faster convergence for minimal cost
. J
é)

Input skew is diffused using recursive partitioning

\ J

Experiments

Baselines

[Standard cracking

e Great under uniform random workloads J

Review: What limitations does standard cracking have?

Baselines

-
e Great under uniform random workloads

Standard cracking Suffers from sequential workloads

-

-
e Introduces randomness and decouples

Stochastic crack ng partitioning from queries

.

Baselines

-

-

Standard cracking

Great under uniform random workloads
Suffers from sequential workloads

-

.

Stochastic cracking

Introduces randomness and decouples
partitioning from queries

Vs

-

Hybrid cracking

A class of techniques aiming to
improve convergence

Baselines

Sort + Search

Scan
_

e ™
Standard - kin Great under uniform random workloads
d d cracking Suffers from sequential workloads
- J
g I d d d d 1)
. . ntroduces randomness an ecouples
Stochastic cracking D : P
partitioning from queries
. J
g 1 f h A
. . A class of techniques aiming to
Hybrid cracking . q g
improve convergence
- J
\

Extreme cases
Full sorting and no sorting

Yes!

Can the meta-adaptive index emulate our baselines?

biirst if q= 0
) buin else if s > taqapt
f(s, q) N bmin + [(bmax - bmin) . (1 - S/tadaptﬂ else if § > teort

Emulation (3 - o

Standard cracking Emulation

bﬁ'rst =1 ! I
b . =1 . g
min (-

e v
bmax = l 0

CIE) i
tadapt =0 ;
t =0 i
sort ! £ I S

Query progress

How do we emulate standard cracking?

Emulation @3

Full Sort

beip = 0O L
b . = 0 e =
min (-

o - Bl
|:)max =0 0

I ull
tadapt =0 ;
t = 100% | i
sort

| | | |

beirst ifg=20

f() _ bmin else if s > tadapt
$,4q) = bmin + [(bmax - bmin) : (1 - S/tadaptﬂ else if s > tSO!'t
bsort else.
Emulation

| | | |

Query progress

How do we emulate a fully sorted index?

Emulation @13

N bmin + [(bmax - bmin) . (1 - S/tadaptﬂ else if § > teort

bﬁrst lfq =0

bmin elseif s > tags
f(s,q) = ot

bsort else.

Granular Index 1K Emulation

e T 10—

b
b . =1 L[
min (-
o
|:)max -1 o
GE) o
tadapt =0 ;
tsort =0 I

What 1if we want

Query progress

to include 1024 partitions initially?

Testing Response Times

Uniform

eq‘uency

Key domain

Normal

Lipf

Key range

Random

.

Range (juery sequénce

Upper bound
Lower bound

Uniform

10000 |

Standard cracking

-
o

Stochastic cracking

100 |

Hybrid crack-sort

Full sort

Latency (ms)

—
o
Zas

Meta-adaptive (manual)

" e -.‘. o
* : .:.:'Q"..] ‘o‘o.'.“

Is meta-adaptive slower?

10

Query number

1000

Lipf

Standard cracking -~ 1000 § .
g 1 H e
Stochastic cracking D N U A :
. 5” 100 ¥ ‘:::.-°*:.': - o
Hybrid crack-sort c y Tl ."-sq“:o.:.;,.i." °3* =
@ :. "'.o....f) o. ..’ o' .:0 .?
Fu-l_-l_ sort g % ~.:..'0‘.‘i.:‘.~“ 2.:;““:“; e :. g
= 1 SRR WY AR 0
Meta-adaptive (manual) SR T e To.d b S PN
©0,0% 00" ()
1
1 | | .10 | H100 ‘1000

Why is it slower on Zipf? Query number

Normal

Standard cracking
Stochastic cracking
Hybrid crack-sort
Full sort

Meta-adaptive (manual)

10000

—
o
o
o
oo

Latency (ms)

il
o

% “;. "‘l,"
[|| NS

10 100 1000
Query number

Tuning

Simulated Annealing!

Simulated Annealing

Simulated annealing approximates global
optimum through a stochastic procedure

What does annealing refer to in “real” life?

Simulated Annealing

Accept a new configurat
probability e dRT/temp

Decrease temperature over ti

Can you think of a limitation of this method?

Simulated Annealing

Parameter Uniform Normal Lipf
et 12 bits 10 5

b . 2 bits 1 3
min

b 5 bits 5 5
max

t 218MB 102 211
adapt

t 354KB 32 32
sort

skewtol 4x 5 5

Cumulative Latency

N
(6}

Standard cracking

N
o

Stochastic cracking

—_
(6]

Hybrid crack-sort

ik
o

Meta-adaptive (manual)

(6}

Cumulative latency (s)

Ak

RandOm SkeWed Per70d7 Sequ@nt7 _LOom out Zoonm in

Conclusion

4)
Fanout 1n k is a versatile enough mechanism to emulate other

cracking algorithms
. J

()
The “meta-adaptive” index performs better than alternative

cracking algorithms by better distributing its efforts)
.

Commentary

What we think

Binyamin: I do not think “meta-adaptive”
is a good characterization of their
technique. In addition, there could have
been more index comparisons.

Arun: The paper does a great job
generalizing various cracking methods,
but the title is misleading as it does
not encompass all adaptive indexing
techniques.

Parthiv: The paper mentions -input
variance 1in the beginning and that
Adaptive Adaptive Indexing will be
better on it, but this 1is not explicitly
backed up during the mathematical
analysis and experiment section.

Thank you! Questions?

