
Adaptive Adaptive Indexing

Arun Shrestha, Parthiv Ganguly, Binyamin Friedman

 Felix Martin Schuhknecht, Jens Dittrich, Laurent Linden

Indexing

What do these indexing techniques have in common?

The Need for Adaptive Indexing
Adaptive Radix Tree

(ART)

Adaptive Merging

Cracking

Hybrid Cracking

Predictive Adaptive
Indexing

History of Adaptive Indexing

2013

Adaptive Radix Tree was
presented at ICDE

2018

Adaptive Adaptive
Indexing was presented
and published at ICDE

2000s

Column-store research
and Commercial
column-stores took off

2007

S. Idreos,
M. L. Kersten,
S. Manegold
“Database cracking”
CIDR

What is cracking?

Q0,Q1,Q2,...,Qn

Q=[low,high)

Standard cracking

Variable
query performance

Slow
convergence speed

Weak
robustness

Limitations

Stochastic cracking
Variable

query performance

Slightly better
convergence speed

Strong
robustness

Hybrid Cracking
Variable

query performance

Fast
convergence speed

Decent
robustness

Cracking Overview

Cracking Variance in Query
Performance

Convergence Speed Robustness

Standard High Slow Weak

Stochastic High Medium Strong

Hybrid High Fast Medium

Can we get all the benefits in 1 cracking algorithm?

Design Principles of Cracking

Cracking

Redistribute
indexing effort

over query
sequence

Data
partitioning

Radix based partitioning (1 bit)
5: 1 0 1

3: 0 1 1

1: 0 0 1

7: 1 1 1

0: 0 0 0

6: 1 1 0

4: 1 0 0

2: 0 1 0

Base table
keys

1 0 1

1 1 0

0 0 1

0 1 1

1 0 0

1 1 1

0 1 0

0 0 0

1

0

Index
column

Histogram

Radix based partitioning (2 bits)
5: 1 0 1

3: 0 1 1

1: 0 0 1

7: 1 1 1

0: 0 0 0

6: 1 1 0

4: 1 0 0

2: 0 1 0

Base table
keys

1 0 1

1 0 0

0 0 1

1 1 0

0 1 0

0 1 1

0 0 0

1 1 1

1 0

0 0

Index
column

Histogram

0 1

1 1

Fanout (partition-in-k)

Is there a pattern?

2K PartitionsK bits per key

Meta-Adaptive Indexing Strategy

What is Meta-Adaptivity?

Classical
Adaptivity

Choose k before starting, and
every time the partitioning
algorithm is used, create k
more partitions

Meta
Adaptivity

Adjust k based on the size of
the input partition

How do we adjust k?

For the first query: Set k to a high number and reduce the
partition size drastically

For subsequent queries: With a decrease in input partition
size, increase the fanout k. If the input partition is small
enough, just sort the partition

How do we adjust k?

For the first query: Set k to a high number and reduce the
partition size drastically

For subsequent queries: With a decrease in input partition
size, increase the fanout k. If the input partition is small
enough, just sort the partition

Issue with Radix Partitioning

Cracking splits the column according to the query
predicates, while radix uses the bits of the key.

What issue can this cause when searching for keys in a
ranged query using radix?

Issue with Radix Partitioning

Cracking splits the column according to the query
predicates, while radix uses the bits of the key.

What issue can this cause when searching for keys in a
ranged query using radix?

For radix you have to search multiple partitions that may or
may not have the key. However, this cost increase is
negligible when compared to the benefits of radix

Handling First Query
5: 1 0 1

3: 0 1 1

1: 0 0 1

7: 1 1 1

0: 0 0 0

6: 1 1 0

4: 1 0 0

2: 0 1 0

Base table
keys

Input
for
First
Query

Out-of-place
Radix
Partitioning

1 0 1

1 1 0

0 0 1

0 1 1

1 0 0

1 1 1

0 1 0

0 0 0

1

0

Index
column

Out-of-place Radix Partitioning w/ SW buffer

Out-of-place Radix Partitioning w/ SW buffer

Out-of-place Radix Partitioning w/ SW buffer

Handling Subsequent Queries

Input for
Subsequent
Queries

1 0 1

1 1 0

0 0 1

0 1 1

1 0 0

1 1 1

0 1 0

0 0 0

1

0

Index
column

Can we still do
out-of-place?
If not, why?

Handling Subsequent Queries

Input for
Subsequent
Queries

1 0 1

1 1 0

0 0 1

0 1 1

1 0 0

1 1 1

0 1 0

0 0 0

1

0

Index
column

Use In-place
Radix
Partitioning

In-place Radix Partitioning

1 0 1

1 1 0

0 0 1

0 1 1

1 0 0

1 1 1

0 1 0

0 0 0

1

0

Index
column

1 0 1

1 1 0

0 0 1

0 1 1

1 0 0

1 1 1

0 1 0

0 0 0

Index
column

1 0

0 0

0 1

1 1

In-place Radix Partitioning

1 0 1

1 1 0

0 0 1

0 1 1

1 0 0

1 1 1

0 1 0

0 0 0

Index
column

1 0

0 0

0 1

1 1

In-place Radix Partitioning

1 0 1

1 1 0

0 0 1

0 1 1

1 0 0

1 1 1

0 1 0

0 0 0

Index
column

1 0

0 0

0 1

1 1

In-place Radix Partitioning

1 0 1

1 1 0

0 0 1

0 1 1

1 0 0

1 1 1

0 1 0

0 0 0

Index
column

1 0

0 0

0 1

1 1

In-place Radix Partitioning

1 0 1

1 1 0

0 0 1

0 1 1

1 0 0

1 1 1

0 1 0

0 0 0

Index
column

1 0

0 0

0 1

1 1

In-place Radix Partitioning

1 0 1

1 1 0

0 0 1

0 1 1

1 0 0

1 1 1

0 1 0

0 0 0

Index
column

1 0

0 0

0 1

1 1

In-place Radix Partitioning

1 0 1

0 1 1

0 0 1

1 1 0

1 0 0

1 1 1

0 1 0

0 0 0

Index
column

1 0

0 0

0 1

1 1

Evaluation of Radix vs Crack-in-2 partitioning

Key Takeaway: We can set
k to a very high value
(1024) and runtime cost
increase will be minimal

Evaluation of Radix vs Crack-in-2 partitioning

Key Takeaway: As input
partition size
increases, the
additional runtime cost
of setting a higher k
also increases.

Defining the Adaptive Fanout Function

The adaptive fanout function f(s,q) will take the input
partition size (s) and query sequence number (q) as inputs,
and output the number of fanout bits.

What predefined values or thresholds do we need before we
mathematically define the function?

Defining the Adaptive Fanout Function

The adaptive fanout function f(s,q) will take the input
partition size (s) and query sequence number (q) as inputs,
and output the number of fanout bits.

What predefined values or thresholds do we need before we
mathematically define the function?

Adapting Fanout Function

Adapting Fanout Function

Adapting Fanout Function

Adapting Fanout Function

Input Skew

What is the problem with a
scenario like this?

And how would you solve it?

Diffusing Input Skew

If an output partition is
greater than a threshold,
it is marked for further
partitioning

Diffusing Input Skew

A histogram is built for
each skewed partition as
the keys are being
transferred

Diffusing Input Skew

Recursively partition
each skewed partition
until all of the
partitions are below the
threshold

Summary of Meta-Adaptivity

Meta-Adaptivity adjusts partitioning fanout based on input
partition size

It uses Radix Partitioning which gives us higher throughput
and faster convergence for minimal cost

Input skew is diffused using recursive partitioning

Experiments

Baselines

● Great under uniform random workloads
● Suffers from sequential workloadsStandard cracking

Review: What limitations does standard cracking have?

Baselines

● Introduces randomness and decouples
partitioning from queriesStochastic cracking

● Great under uniform random workloads
● Suffers from sequential workloadsStandard cracking

Baselines

Hybrid cracking ● A class of techniques aiming to
improve convergence

● Introduces randomness and decouples
partitioning from queriesStochastic cracking

● Great under uniform random workloads
● Suffers from sequential workloadsStandard cracking

Baselines

Hybrid cracking

● Extreme cases
● Full sorting and no sorting

● A class of techniques aiming to
improve convergence

● Introduces randomness and decouples
partitioning from queries

Sort + Search

Scan

Stochastic cracking

● Great under uniform random workloads
● Suffers from sequential workloadsStandard cracking

Yes!
Can the meta-adaptive index emulate our baselines?

Emulation (1/3)

bfirst

bmin

bmax

tadapt

tsort

= 1

= 1

= 1

= 0

= 0

How do we emulate standard cracking?

Standard cracking

Ti
me
 s

pe
nt

Query progress

Emulation

bfirst

bmin

bmax

tadapt

tsort

= 0

= 0

= 0

= 0

= 100%

How do we emulate a fully sorted index?

Full Sort

Ti
me
 s

pe
nt

Query progress

Emulation

Emulation (2/3)

bfirst

bmin

bmax

tadapt

tsort

= 10

= 1

= 1

= 0

= 0

What if we want to include 1024 partitions initially?

Granular Index 1K

Ti
me
 s

pe
nt

Query progress

Emulation

Emulation (3/3)

Testing Response Times

Key distributions

Uniform

Zipf

Normal

Key domain

Fre
qu

en
cy

Random

Skew

Periodic

Sequential

Zoom out alt.

Zoom in alt.

Range query sequence

Ke
y r

an
ge

Upper bound
Lower bound

Uniform

Standard cracking

Stochastic cracking

Hybrid crack-sort

Full sort

Meta-adaptive (manual)

Query number

La
te

nc
y
(m
s)

Is meta-adaptive slower?

Zipf

Standard cracking

Stochastic cracking

Hybrid crack-sort

Full sort

Meta-adaptive (manual)

Query number

La
te

nc
y
(m
s)

Why is it slower on Zipf?

Query number

La
te

nc
y
(m
s)

Normal

Standard cracking

Stochastic cracking

Hybrid crack-sort

Full sort

Meta-adaptive (manual)

Tuning

How do we tune our parameters?

Simulated Annealing!

Simulated Annealing

Simulated annealing approximates global
optimum through a stochastic procedure

What does annealing refer to in “real” life?

Simulated Annealing

Accept a new configuration with
probability e-dQRT/temp

Decrease temperature over time

Can you think of a limitation of this method?

Simulated Annealing

Parameter Uniform Normal Zipf

bfirst 12 bits 10 5

bmin 2 bits 1 3

bmax 5 bits 5 5

tadapt 218MB 102 211

tsort 354KB 32 32

skewtol 4x 5 5

Cumulative Latency

Standard cracking

Stochastic cracking

Hybrid crack-sort

Meta-adaptive (manual)

Meta-adaptive (auto)

Random Skewed PeriodicSequential
Zoom out Zoom in

Cu
mu

la
ti
ve

 l
at

en
cy

 (
s)

Conclusion

Fanout in k is a versatile enough mechanism to emulate other
cracking algorithms

The “meta-adaptive” index performs better than alternative
cracking algorithms by better distributing its efforts

Commentary
What we think

Binyamin: I do not think “meta-adaptive”
is a good characterization of their
technique. In addition, there could have
been more index comparisons.

Arun: The paper does a great job
generalizing various cracking methods,
but the title is misleading as it does
not encompass all adaptive indexing
techniques.

Parthiv: The paper mentions input
variance in the beginning and that
Adaptive Adaptive Indexing will be
better on it, but this is not explicitly
backed up during the mathematical
analysis and experiment section.

Thank you! Questions?

