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Indexes in Databases S
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Indexes in Databases
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organize efficient unstructured structured
data queries data data

The process of inducing “sortedness” to an otherwise

unsorted data collection
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What if data already has some
structure?
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>

What if data already has some
structure?

treated same as
unstructured data!

W

Value
Value

Position (time) Position (time)

\—'—l

Near-sorted data
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Irrespective of Sortedness, Same Ingestion Performance

Standard ingestion

Ingestion cost

Scrambled Sorted

Increasing data sortedness
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Are There Faster Alternatives?

Standard ingestion
S
O
S
= Bulk loading requires all data a priori!
o
<
......... .B..a.l.iz..l.a.éud...i.ﬁ..g..........................----.-.-..........................................--.-.-............................
Scrambled Sorted

Increasing data sortedness
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Ideally, Higher Sortedness Should Lead to Faster Ingestion

Standard ingestion

Ingestion cost

Bulk loading

Scrambled Sorted

Increasing data sortedness
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Near-Sorted Data i1s Frequently Found

“ Time Series = ii Tpm—
|/\/ Stock market

efficient reads fast writes

. classical indexes carry redundant
’4 Join/query effort!
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Vision for Sortedness-Aware Indexing

A
Scan
O(n) ®
{@ Reduced write-cost if
0 data is pre-ordered
S
ge)
q0)
Y
Querying
an index : .. .
Append write cost Standard index
O(1) ingestion . 3
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Vision: Sortedness-Aware Indexes

A
Scan
T unsorted
om) T®
0
o)
O
o
(qv)
L
sorted
Querying
an index : ., X
Append write cost Standard index
BOSTON O(1) ingestion
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Vision: Sortedness-Aware Indexes

A
Scan
T unsorted
o T%
1
O
o
ge
q0)
L
Querying
an index . .
Append write cost Standard index
BOSTON ingestion
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Agenda

Sortedness Metrics

Sortedness Aware (SWARE) Indexing
A Simpler Design
Open Questions
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Quantifying Data Sortedness

Inversions # pairs in incorrect order

# increasing contiguous subsequences
least # swaps needed to establish total order
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Any downsides of the
"simple” metrics?
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Quantifying Data Sortedness
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Inversions

Description

# pairs in incorrect order

Runs

# increasing contiguous subsequences

least # swaps needed to establish total order

|
[
6 7 8

9

10 1 2 3 4 5
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Quantifying Data Sortedness

Inversions # pairs in incorrect order

|
[
6 7 8

# increasing contiguous subsequences

least # swaps needed to establish total order

1
9 10 1 2 3 4 5

|
global disorder f
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Quantifying Data Sortedness
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Inversions

Description

# pairs in incorrect order

Runs

# increasing contiguous subsequences

least # swaps needed to establish total order

N\
2 1
"

"
4 3
"

"
6 5
"

7~ N\
8 7
"

"
10 | 9
"
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Quantifying Data Sortedness
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Inversions

Runs —

least # swaps needed to establish total order

v # pairs in incorrect order

Description

# increasing contiguous subsequences

N\
2 1
"

" "
4 3 6 5
" "

local disorder

7~ N\
8 7
"

"
10 | 9
"
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(K, L)-Sortedness Metric
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#. unordered entries = K

10

/
\\9345 6 | 7 [ 2

[inspired by BenMoshe, ICDT 2011]
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(K, L)-Sortedness Metric
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#. unordered entries = K

10

max. displacement among unordered entries

[inspired by BenMoshe, ICDT 2011]

=L
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The Sortedness-Aware
(SWARE) Paradigm
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Sortedness-Aware (SWARE) Paradigm

S+E+Q

intelligent opportunistic increased fill
buffering bulk loading and split factor

SWARE framework can be applied to any tree-index!
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SWARE Ingestions

Buffer
Zonemap PTCIEPC! P pO P RN R r SWARE Buffer
(min-max) AT T T Q0T YT @ ¢

flush 3 pages

* non overlapping pages may move

D —_ tail leaf node

D —_— non-overlapping pages flush non-overlapping pages to tree

reeses ([ () (D D
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SWARE Ingestions

- SWARE Buffer

N
Zonemap A8 49 o O o0 oo \0%0 RN
(min-max) AT T T Q0T YT @ ¢

flush 3 pages
D —_ tail leaf node

D —_— non-overlapping pages

* non overlapping pages may move
flush non-overlapping pages to tree

bulk load page-by-page if in order
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SWARE Ingestions

- SWARE Buffer

Zonemap AR 9 o O o
(Min-max) AP AP N o O S

D —_ tail leaf node

D —_— non-overlapping pages

* non overlapping pages may move
* flush non-overlapping pages to tree

bulk load page-by-page if in order
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SWA RE I N g eStiO NS / move & sort remaining entries

- SWARE Buffer

) 0
Zonemap o1© \030 :\Q% A

Q
9" g . 5
(min-max) PN o\? ¥ ,\o”ﬂ' ,\090

D —_ tail leaf node

D —_— non-overlapping pages

* non overlapping pages may move
* flush non-overlapping pages to tree

bulk load page-by-page if in order
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update non-overlapping pages

SWARE Ingestions

Buffer
Zonema o -  SWARE Buffer
p o g0 & AP P
(min-max) PN o\’ o ,\o”ﬂ' ,\090 _

* non overlapping pages may move

D —_ tail leaf node

D . non-overlapping pages * flush non-overlapping pages to tree

bulk load page-by-page if in order
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SWARE Ingestions

Buffer
- SWARE Buffer

Zonemap
(min-max)

D —_ tail leaf node

D —_— non-overlapping pages

* non overlapping pages may move
* flush non-overlapping pages to tree

bulk load page-by-page if in order
D — fully sorted pages
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How do lookups work?
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SWARE Lookups
Global Bloom filter ? n

Zonemap & o ® NE gD e P
. cb%g qQQ S\ /\'\\ \'\Q QQQ’ Q’\Q Q’\Q
(min-max) D) \ \ A \ A = SWARE Buffer

Yy Y Y Y Y YTYY

Per-page Bloom filters

Buffer

* sorted section uses faster interpolation
search

D —— tail leaf node

D — non-overlapping pages * Global BF. helps skip buffer probe

Per-page BFs + Zonemaps eliminate

D — fully sorted pages g
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Experimental Evaluation

System Setup: Index Setup:
Intel Xeon Gold 5230 - Buffer = 40MB; flush <= 50%

- BFs = 10 BPK; Murmur Hash

2.1GHZ processor w. 20 cores
384GB RAM, 28MB L3 cache - Splitat 80%

B*-tree design inspired by STX::B-tree can also work as Be-tree
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Evaluating SWARE Under Varying Sortedness

—B-tree cost - - Scrambled —Less sorted Near-sorted ——Fully sorted
K=L=50% K=10%, L=5%
10 - up to 9x for write-heavy workloads
8
S c up to 4x for mixed
ks reads & writes
o
v 4
2
0

10:90 25:75 40:60 50:50 60:40 75:25 90:10
Read-Write Ratio
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Raw Ingestion Performance

B B-tree M SA B-tree M top-insert M bulk-load
100%
—~ 15 &z
i”:& I 5 o)
> " 5 75%
3 S oo
© . 50%
+ § -
] 2 25%
= .
0 = 0%
0 1 5 10 25 50 0 T 5 10 25 50
% out-of-order entries % out-of-order entries
ingestion latency reduced between 27-90% bulk loading maximized with

high data sortedness
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SWARE Improves Space Utilization

B B-tree M SA B-tree

s 2.5
C
= .9
O =
g = 2
C
i
£ 1.5
3
s 1
-
@)
€ 05
=
0

Fully sorted Near-sorted Less-sorted

increased fill/split factor helps reduce memory footprint
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Summarizing SWARE [ICDE 2023]

—

S+ (5 -~

intelligent opportunistic Improves performance by
buffering bulk loading exploiting sortedness

Any downsides to wider applicability?
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Summarizing SWARE [ICDE 2023]

—

S+ (5 -~

intelligent opportunistic Improves performance by
buffering bulk loading exploiting sortedness

Increases Complexity in Design!
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Can we achieve fast ingestions without
buffering?
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Inserting to the Tail-leaf (PostgreSQL & MySQL)

Normal Insertion (top-insert) Tail-leaf Insertion
” Insert Key 65 ” Insert Key 65 N tail-leaf-ptr @ min_val(55)
> is 65 >= m
35 yes!
Zi a5 51‘5 15| 25 45 | 55

\4 f A
5110 15 | 20 25 | 30 35| 40 45 | 50 m

add key to tail
leaf directly!
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Is the tail-leaf optimization
the solution?
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Does Tail-leaf Insertion Work?

100 A
7 tail-BT-tree

% fast-inserts
(@)
(@)

0 0.01 005 0.1 0.5 1 3 D 10
% out-of-order entries (K)
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Does Tail-leaf Insertion Always Work?

/ Works for fully and very highly sorted data

100 A
7 tail-BT-tree

% fast-inserts
(@)
S

O I I I I I I I I I
0 0.01 0.06 0.1 0.5 1 3 D 10

Tail-leaf's buffer is limited to /6 out-of-order entries (K)

leaf node!
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Does Tail-leaf Insertion Always Work?

/ Works for fully and very highly sorted data

100 A
7 tail-BT-tree

% fast-inserts
(@)
(@)

O | | | I,’,qquq-I | | | |
0 0.01 0.05 0.1 0.5 1 3 5 10
Tail-leaf's buffer is limited to | /* *ororder entries (K) |
leaf node! Y

Degrades very quickly
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However, tail-leaf points us to
the right direction...
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Key Idea — Predicting the Ordered LEaf (POLE)

A

Sortedness-aware
predictor

BOSTON
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Leaf appends

Fast ingestion
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Key Idea — Predicting the Ordered LEaf (POLE)

A

Sortedness-aware
predictor

BOSTON

UNIVERSITY

+

il

Leaf appends

it could be any node!

Fast ingestion

Q
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Insertions in Steady-State

Insert (x, v)

l top-insert

if x is in pole
range & fits

pole tail
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When Pole Splits

Legend
p = smallest entry in node previous to pole;

g = smallest entry in pole
r = smallest entry in newly created node
[C]= pointer to pole node

Predict using IKR (In-order Key estimatoR)

q—1p
=g+ .pole.:.. - (1.5
X =q <pole_prevsize) polegi,e - (1.5)

|
density between two non-outliers

pole_prev  current newly
pole  created

node
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When Pole Splits

Legend
if r > x, new node has outliers p = smallest entry in node previous to pole;
q = smallest entry in pole

r = smallest entry in newly created node
[C]= pointer to pole node

Predict using IKR (In-order key estimatoR)

q—7p
=g+ .pole..., - (1.5
X =q <pole_prevsize) poleg;,e - (1.5)

|
density between two non-outliers

pole_ prev  current newly
pole  created

node

pole stays as is
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When Pole Splits

Legend
if r <= x, new node has at least p = smallest entry in node previous to pole;
one non-outlier value q = smallest entry in pole

r = smallest entry in newly created node
[C]= pointer to pole node

Predict using IKR (In-order key estimatoR)

q—7p
=g+ .polewi.. - (1.5
X =q <pole_prevsize) poleg;,e - (1.5)

|
density between two non-outliers

q

pole_prev  current Newly
pole  created

node

Update pole to newly created node from split
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Comparing with SWARE

B SWARE M Pole

Buffer pays off: some vs. none fast ingestion

5400

5300 up to 2.05x faster

§ 200 minimal metadata v

E 100 avoids SWARE buffer management v
0

0 1 4 10 25 50 100
% outf-order entries

buffer helps: full bulk loading
Pole is still faster!
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Comparing with SWARE

full bulk loading = smaller tree

—
o
o O

BOSTON
UNIVERSITY

B SWARE M Pole

10 25 50 100
% out-of-order entries

0O 1 3 4

—
N

900
600

300

Lookup Latency (ns)

B SWARE ™ Pole

27% 29%

l

O 1 3 4
% out-of-order entries

10 25 50 100

up to 29% faster for point lookups

No buffering = no read overhead!
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Future Work - Concurrency in Fast Path

—Random data —Highly sorted data
=
=
g’ throughput drops due to high contention
<
|_
c
.9
O
(@)
<
# threads
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Future Work - Concurrency in Fast Path

—Random data —Highly sorted data

can we increase throughput for fast-path?

@ make threads work for and not against each other!

-—-_-*
-—--*

@ can we use something like consolidation array?

Ingestion Throughput

# threads

Q
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Summary

Scan here to learn
more about our work

ldentify “sortedness” as a resource

Classical indexes do not exploit sortedness by design!

SWARE paradigm & Pole optimization optimize for sortedness

Further research required for learned indexes + joins

Q
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The Team

Konstantinos

Karatsenidis Andy Huynh

=. Microsoft . mongoDB. B
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