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Indexes in Databases
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B+-trees
R-trees

LSM-trees Skip lists



Indexes in Databases

organize

data

efficient 

queries
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The process of inducing “sortedness” to an otherwise 
unsorted data collection

unstructured

data

structured

data



What if data already has some 

structure?



What if data already has some 
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Irrespective of Sortedness, Same Ingestion Performance

Standard ingestion
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Are There Faster Alternatives?

Standard ingestion

Bulk loading
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Bulk loading requires all data a priori!



Ideally, Higher Sortedness Should Lead to Faster Ingestion

Standard ingestion

Bulk loading
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Near-Sorted Data is Frequently Found 

Time Series

Stock market
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Join/query

efficient reads fast writes

classical indexes carry  redundant

effort!



Vision for Sortedness-Aware Indexing

Reduced write-cost if 
data is  pre-ordered
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Vision: Sortedness-Aware Indexes
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Vision: Sortedness-Aware Indexes
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Agenda

Introduction

Vision

Sortedness Metrics

Sortedness Aware (SWARE) Indexing

A Simpler Design

Open Questions



Quantifying Data Sortedness
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Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order



Any downsides of the
”simple” metrics? 



Quantifying Data Sortedness

6 7 8 9 10 1 2 3 4 5
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Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order



Quantifying Data Sortedness

6 7 8 9 10 1 2 3 4 5

global disorder
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Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order



Quantifying Data Sortedness

2 1 4 3 6 5 8 7 10 9
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Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order



Quantifying Data Sortedness

2 1 4 3 6 5 8 7 10 9

local disorder
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Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order



(K, L)-Sortedness Metric

1 8 3 4 5 6 7 2 9 10

#. unordered entries = K

[inspired by BenMoshe, ICDT 2011] 23



(K, L)-Sortedness Metric

1 8 3 4 5 6 7 2 9 10

#. unordered entries 

max. displacement among unordered entries

= K

= L

[inspired by BenMoshe, ICDT 2011] 24



The Sortedness-Aware 
(SWARE) Paradigm



Sortedness-Aware (SWARE) Paradigm

opportunistic 

bulk loading

increased fill

and split factor

SWARE framework can be applied to any tree-index!

intelligent 

buffering



SWARE Ingestions

...

B+-tree

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

tail leaf node non overlapping pages may move

flush 3 pages

flush non-overlapping pages to treenon-overlapping pages



SWARE Ingestions

...

B+-tree

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

flush 3 pages

bulk load page-by-page if in order

tail leaf node

non-overlapping pages

non overlapping pages may move

flush non-overlapping pages to tree



SWARE Ingestions

...

B+-tree

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

tail leaf node

non-overlapping pages

bulk load page-by-page if in order

non overlapping pages may move

flush non-overlapping pages to tree



SWARE Ingestions

...

B+-tree

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

move & sort remaining entries

tail leaf node

non-overlapping pages

bulk load page-by-page if in order

non overlapping pages may move

flush non-overlapping pages to tree



SWARE Ingestions

...

B+-tree

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

update non-overlapping pages

tail leaf node

non-overlapping pages

bulk load page-by-page if in order

non overlapping pages may move

flush non-overlapping pages to tree



SWARE Ingestions

...

B+-tree

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

tail leaf node

non-overlapping pages

fully sorted pages
bulk load page-by-page if in order

non overlapping pages may move

flush non-overlapping pages to tree



How do lookups work? 



SWARE Lookups

...

B+-tree

Buffer

SWARE Buffer

Leaf pages

Zonemap
(min-max)

Global Bloom filter

Per-page Bloom filters

Global BF. helps skip buffer probe

Per-page BFs + Zonemaps eliminate 
page-scans

sorted section uses faster interpolation 
searchtail leaf node

non-overlapping pages

fully sorted pages



Experimental Evaluation

System Setup:

- Intel Xeon Gold 5230 

- 2.1GHZ processor w. 20 cores

- 384GB RAM, 28MB L3 cache

Index Setup:

- Buffer = 40MB; flush <= 50%

- BFs = 10 BPK; Murmur Hash

- Split at 80%

B+-tree design inspired by STX::B-tree can also work as Bε-tree



Evaluating SWARE Under Varying Sortedness
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Raw Ingestion Performance

ingestion latency reduced between 27-90%
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SWARE Improves Space Utilization

increased fill/split factor helps reduce memory footprint

0

0.5

1

1.5

2

2.5

Fully sorted Near-sorted Less-sorted

M
e
m

o
ry

 f
o

o
tp

ri
n

t 
(#

 n
o

d
e
s)

M
il
li
o

n
s

B-tree SA B-tree

0.52x 0.6x



Summarizing SWARE [ICDE 2023]

opportunistic 

bulk loading

intelligent 

buffering

Any downsides to wider applicability?

Improves performance by 

exploiting sortedness



Summarizing SWARE [ICDE 2023]

opportunistic 

bulk loading

intelligent 

buffering

Increases Complexity in Design!

Improves performance by 

exploiting sortedness



Can we achieve fast ingestions without
buffering?



Inserting to the Tail-leaf (PostgreSQL & MySQL)

Normal Insertion (top-insert) Tail-leaf Insertion

Insert Key 65 tail-leaf-ptrInsert Key 65 min_val(55)

45 55

5 10 15 20 25 30 35 40 45 50

35

15 25

55 60

add key to tail 

leaf directly!

is 65 >= min_val?
yes!



Is the tail-leaf optimization 
the solution?



Does Tail-leaf Insertion Work?



Does Tail-leaf Insertion Always Work?

Works for fully and very highly sorted data

Tail-leaf’s buffer is limited to 

leaf node!



Does Tail-leaf Insertion Always Work?

Works for fully and very highly sorted data

Degrades very quickly

Tail-leaf’s buffer is limited to 

leaf node!



However, tail-leaf points us to 
the right direction…



Key Idea – Predicting the Ordered LEaf (POLE)

Sortedness-aware 

predictor
Leaf appends Fast ingestion



Key Idea – Predicting the Ordered LEaf (POLE)

Sortedness-aware 

predictor
Leaf appends Fast ingestion

it could be any node!



Insertions in Steady-State

B+-tree

Insert  (x, v)

pole

if x is in pole 

range & fits

top-insert 

tail

…



When Pole Splits

B+-tree

current 

pole

Legend

p = smallest entry in node previous to pole;

q = smallest entry in pole

r  = smallest entry in newly created node

= pointer to pole node 

Predict using IKR (In-order Key estimatoR)

𝑥 = 𝑞 +
𝑞 − 𝑝

𝑝𝑜𝑙𝑒_𝑝𝑟𝑒𝑣𝑠𝑖𝑧𝑒
⋅ 𝑝𝑜𝑙𝑒𝑠𝑖𝑧𝑒 ⋅ (1.5)

density between two non-outliers
pole_prev newly 

created 

node

p q r



When Pole Splits

B+-tree

current 

pole

Legend

p = smallest entry in node previous to pole;

q = smallest entry in pole

r  = smallest entry in newly created node

= pointer to pole node 

Predict using IKR (In-order key estimatoR)

𝑥 = 𝑞 +
𝑞 − 𝑝

𝑝𝑜𝑙𝑒_𝑝𝑟𝑒𝑣𝑠𝑖𝑧𝑒
⋅ 𝑝𝑜𝑙𝑒𝑠𝑖𝑧𝑒 ⋅ (1.5)

pole_prev newly 

created 

node

p q r

if r > x, new node has outliers

pole stays as is

density between two non-outliers



When Pole Splits

B+-tree

current 

pole

Legend

p = smallest entry in node previous to pole;

q = smallest entry in pole

r  = smallest entry in newly created node

= pointer to pole node 

Predict using IKR (In-order key estimatoR)

𝑥 = 𝑞 +
𝑞 − 𝑝

𝑝𝑜𝑙𝑒_𝑝𝑟𝑒𝑣𝑠𝑖𝑧𝑒
⋅ 𝑝𝑜𝑙𝑒𝑠𝑖𝑧𝑒 ⋅ (1.5)

pole_prev newly 

created 

node

p q r

if r <= x, new node has at least 

one non-outlier value

Update pole to newly created node from split

density between two non-outliers



Comparing with SWARE

up to 2.05x faster

minimal metadata ✓
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avoids SWARE buffer management ✓

buffer helps: full bulk loading

Pole is still faster!

Buffer pays off: some vs. none fast ingestion

2.05x
2x

1.85x
1.55x



Comparing with SWARE
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up to 29% faster for point lookups

No buffering ⇒ no read overhead!

2.05x
2x

1.85x
1.55x

27% 29%

full bulk loading ⇒ smaller tree



Future Work - Concurrency in Fast Path
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throughput drops due to high contention



Future Work - Concurrency in Fast Path
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# threads

Random data Highly sorted data

can we increase throughput for fast-path?

make threads work for and not against each other!

can we use something like consolidation array?



Summary

Identify “sortedness” as a resource 

Classical indexes do not exploit sortedness by design!

SWARE paradigm & Pole optimization optimize for sortedness

Further research required for learned indexes + joins

Scan here to learn 

more about our work
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