BOSTON

UNIVERSITY

Indexing for Near-Sorted Data

Aneesh Raman

Matthaios Olma

Subhadeep Sarkar

Manos Athanassoulis

D|SC

Indexes in Databases S

1RL - Ra RLL

VREURETT

I i ERS R13

1 1

1 RIO : -

1 [rE | [RL4

! |

J S
F — — = (R {1 S [R R gy g
[R2 \ RY R1E |
| | R17 1
lpcemcmcmeccccccdececcccccees | B CToTTTeo 1
......... SRR S
I'RE 1

|| R16 |
|) | [R1g| | !
(RIS | |
] Il ___________________ I
] ol
1 1
T T T o T T e e e e e e e e e e e ———— -

R1 | RZ
- —
R3 | R4 RS R6 | RY
Data Point "‘. o — e
Key Value ata Pointer Slblmg Pomter] - H""‘-.__ S —
. . - . . . — . o —)
Leaf Node RE | RO |R10| |RI1[R1Z R13 R14 R15 |R16 R17 RIE|R1D

B*-trees
D G oy R-trees
@@ immutable @ memtable (D ssTable

memtable

LSM-trees Skip lists

BOSTON , | 88&
UNIVERSITY DiSC

Indexes in Databases

value

SO, ¢ v . e
". .l..n ..' . . : .-‘0.-. '. ®e o
«ts o O e o o6 o
. ® g0] e 9 LI .
W e Ve S P * .
o® :. . [. e . :. i -\'. . 5, e,
* -~ 0'-‘ t: « ° :- - -.. o’ ."-
. l.u"... . R L3 ¢ .
. ° . S % ° .

e %o ° e ®' I] o
o '.l -.. .® H .e . '..ﬁo. . ."..
LRI T .« % os . o o
- '.‘I ;.l ° ® e, e ..'c *
°, 0 e °. ° . A e

3 . ‘.. IS ~ o '. CYC I .
. l.' . b .-‘. . : ° . '. g " '.
o Py M LI ‘e . s o ®y
. . s
o 0 * :'. .': “ "::o * "'.. o o® a.
. :I ® e .- ':. '.-. e -. Lo % ‘o o
L]

'ﬁ.o N % o

* ﬁc')si’zic')n‘ position
organize efficient unstructured structured
data queries data data

The process of inducing “sortedness” to an otherwise

unsorted data collection

BOSTON ;
UNIVERSITY

Q

©
DISC

>

What if data already has some
structure?

BOSTON 3
UNIVERSITY DISC

>

What if data already has some
structure?

treated same as
unstructured data!

W

Value
Value

Position (time) Position (time)

\—'—l

Near-sorted data

BOSTON ®
UNIVERSITY DiSC

Irrespective of Sortedness, Same Ingestion Performance

Standard ingestion

Ingestion cost

Scrambled Sorted

Increasing data sortedness

BOSTON . | 88%
UNIVERSITY DISC

Are There Faster Alternatives?

Standard ingestion
S
O
S
= Bulk loading requires all data a priori!
o
<
......... .B..a.l.iz..l.a.éud...i.ﬁ..g..........................----.-.-..--.-.-............................
Scrambled Sorted

Increasing data sortedness

BOSTON . B
UNIVERSITY DISC

Ideally, Higher Sortedness Should Lead to Faster Ingestion

Standard ingestion

Ingestion cost

Bulk loading

Scrambled Sorted

Increasing data sortedness

BOSTON o | 88s
UNIVERSITY DiSC

Near-Sorted Data i1s Frequently Found

“ Time Series = ii Tpm—
|/\/ Stock market

efficient reads fast writes

. classical indexes carry redundant
’4 Join/query effort!

BOSTON » <
UNIVERSITY DISC

Vision for Sortedness-Aware Indexing

A
Scan
O(n) ®
{@ Reduced write-cost if
0 data is pre-ordered
S
ge)
q0)
Y
Querying
an index : .. .
Append write cost Standard index
O(1) ingestion . 3
UNIVERSITY D|SC

Vision: Sortedness-Aware Indexes

A
Scan
T unsorted
om) T®
0
o)
O
o
(qv)
L
sorted
Querying
an index : ., X
Append write cost Standard index
BOSTON O(1) ingestion

UNIVERSITY

13

Q

©
DISC

Vision: Sortedness-Aware Indexes

A
Scan
T unsorted
o T%
1
O
o
ge
q0)
L
Querying
an index . .
Append write cost Standard index
BOSTON ingestion

UNIVERSITY

O
[

15

Q

©
DISC

Agenda

Sortedness Metrics

Sortedness Aware (SWARE) Indexing
A Simpler Design
Open Questions

BOSTON ®
UNIVERSITY DISC

Quantifying Data Sortedness

Inversions # pairs in incorrect order

increasing contiguous subsequences
least # swaps needed to establish total order

BOSTON _—E
UNIVERSITY DiSC

Any downsides of the
"simple” metrics?

DISC

Quantifying Data Sortedness

BOSTON
UNIVERSITY

Inversions

Description

pairs in incorrect order

Runs

increasing contiguous subsequences

least # swaps needed to establish total order

|
[
6 7 8

9

10 1 2 3 4 5

19

Q

©
DISC

Quantifying Data Sortedness

Inversions # pairs in incorrect order

|
[
6 7 8

increasing contiguous subsequences

least # swaps needed to establish total order

1
9 10 1 2 3 4 5

|
global disorder f

BOSTON . ©
UNIVERSITY DiSC

Quantifying Data Sortedness

BOSTON
UNIVERSITY

Inversions

Description

pairs in incorrect order

Runs

increasing contiguous subsequences

least # swaps needed to establish total order

N\
2 1
"

"
4 3
"

"
6 5
"

7~ N\
8 7
"

"
10 | 9
"

21

Q

©
DISC

Quantifying Data Sortedness

BOSTON
UNIVERSITY

Inversions

Runs —

least # swaps needed to establish total order

v # pairs in incorrect order

Description

increasing contiguous subsequences

N\
2 1
"

" "
4 3 6 5
" "

local disorder

7~ N\
8 7
"

"
10 | 9
"

22

Q

©
DISC

(K, L)-Sortedness Metric

BOSTON
UNIVERSITY

#. unordered entries = K

10

/
\\9345 6 | 7 [2

[inspired by BenMoshe, ICDT 2011]

23

Q

©
DISC

(K, L)-Sortedness Metric

BOSTON
UNIVERSITY

#. unordered entries = K

10

max. displacement among unordered entries

[inspired by BenMoshe, ICDT 2011]

=L

24

Q

©
DISC

The Sortedness-Aware
(SWARE) Paradigm

©
DISC

Sortedness-Aware (SWARE) Paradigm

S+E+Q

intelligent opportunistic increased fill
buffering bulk loading and split factor

SWARE framework can be applied to any tree-index!

BOSTON ®
UNIVERSITY DISC

SWARE Ingestions

Buffer
Zonemap PTCIEPC! P pO P RN R r SWARE Buffer
(min-max) AT T T Q0T YT @ ¢

flush 3 pages

* non overlapping pages may move

D —_ tail leaf node

D —_— non-overlapping pages flush non-overlapping pages to tree

reeses ([() (D D

BOSTON 5
UNIVERSITY =

SWARE Ingestions

- SWARE Buffer

N
Zonemap A8 49 o O o0 oo \0%0 RN
(min-max) AT T T Q0T YT @ ¢

flush 3 pages
D —_ tail leaf node

D —_— non-overlapping pages

* non overlapping pages may move
flush non-overlapping pages to tree

bulk load page-by-page if in order

BOSTON ®
UNIVERSITY DiSC

SWARE Ingestions

- SWARE Buffer

Zonemap AR 9 o O o
(Min-max) AP AP N o O S

D —_ tail leaf node

D —_— non-overlapping pages

* non overlapping pages may move
* flush non-overlapping pages to tree

bulk load page-by-page if in order

BOSTON ®
UNIVERSITY DiSC

SWA RE I N g eStiO NS / move & sort remaining entries

- SWARE Buffer

) 0
Zonemap o1© \030 :\Q% A

Q
9" g . 5
(min-max) PN o\? ¥ ,\o”ﬂ' ,\090

D —_ tail leaf node

D —_— non-overlapping pages

* non overlapping pages may move
* flush non-overlapping pages to tree

bulk load page-by-page if in order

BOSTON
UNIVERSITY

Q

©
DISC

update non-overlapping pages

SWARE Ingestions

Buffer
Zonema o - SWARE Buffer
p o g0 & AP P
(min-max) PN o\’ o ,\o”ﬂ' ,\090 _

* non overlapping pages may move

D —_ tail leaf node

D . non-overlapping pages * flush non-overlapping pages to tree

bulk load page-by-page if in order

BOSTON ®
UNIVERSITY DiSC

SWARE Ingestions

Buffer
- SWARE Buffer

Zonemap
(min-max)

D —_ tail leaf node

D —_— non-overlapping pages

* non overlapping pages may move
* flush non-overlapping pages to tree

bulk load page-by-page if in order
D — fully sorted pages

BOSTON ®
UNIVERSITY DiSC

How do lookups work?

BOSTON 3
UNIVERSITY DiSC

SWARE Lookups
Global Bloom filter ? n

Zonemap & o ® NE gD e P
. cb%g qQQ S\ /\'\\ \'\Q QQQ’ Q’\Q Q’\Q
(min-max) D) \ \ A \ A = SWARE Buffer

Yy Y Y Y Y YTYY

Per-page Bloom filters

Buffer

* sorted section uses faster interpolation
search

D —— tail leaf node

D — non-overlapping pages * Global BF. helps skip buffer probe

Per-page BFs + Zonemaps eliminate

D — fully sorted pages g

/\;

Q

©
DISC

: |
e ()RR ..

Experimental Evaluation

System Setup: Index Setup:
Intel Xeon Gold 5230 - Buffer = 40MB; flush <= 50%

- BFs = 10 BPK; Murmur Hash

2.1GHZ processor w. 20 cores
384GB RAM, 28MB L3 cache - Splitat 80%

B*-tree design inspired by STX::B-tree can also work as Be-tree

BOSTON ®
UNIVERSITY DISC

Evaluating SWARE Under Varying Sortedness

—B-tree cost - - Scrambled —Less sorted Near-sorted ——Fully sorted
K=L=50% K=10%, L=5%
10 - up to 9x for write-heavy workloads
8
S c up to 4x for mixed
ks reads & writes
o
v 4
2
0

10:90 25:75 40:60 50:50 60:40 75:25 90:10
Read-Write Ratio

BOSTON <
UNIVERSITY DiSC

Raw Ingestion Performance

B B-tree M SA B-tree M top-insert M bulk-load
100%
—~ 15 &z
i”:& I 5 o)
> " 5 75%
3 S oo
© . 50%
+ § -
] 2 25%
= .
0 = 0%
0 1 5 10 25 50 0 T 5 10 25 50
% out-of-order entries % out-of-order entries
ingestion latency reduced between 27-90% bulk loading maximized with

high data sortedness

BOSTON 3
UNIVERSITY DiSC

SWARE Improves Space Utilization

B B-tree M SA B-tree

s 2.5
C
= .9
O =
g = 2
C
i
£ 1.5
3
s 1
-
@)
€ 05
=
0

Fully sorted Near-sorted Less-sorted

increased fill/split factor helps reduce memory footprint

BOSTON ®
UNIVERSITY DiSC

Summarizing SWARE [ICDE 2023]

—

S+ (5 -~

intelligent opportunistic Improves performance by
buffering bulk loading exploiting sortedness

Any downsides to wider applicability?

BOSTON ®
UNIVERSITY DISC

Summarizing SWARE [ICDE 2023]

—

S+ (5 -~

intelligent opportunistic Improves performance by
buffering bulk loading exploiting sortedness

Increases Complexity in Design!

BOSTON ®
UNIVERSITY DISC

Can we achieve fast ingestions without
buffering?

BOSTON 3
UNIVERSITY DISC

Inserting to the Tail-leaf (PostgreSQL & MySQL)

Normal Insertion (top-insert) Tail-leaf Insertion
” Insert Key 65 ” Insert Key 65 N tail-leaf-ptr @ min_val(55)
> is 65 >= m
35 yes!
Zi a5 51‘5 15| 25 45 | 55

\4 f A
5110 15 | 20 25 | 30 35| 40 45 | 50 m

add key to tail
leaf directly!

BOSTON 8
UNIVERSITY DISC

Is the tail-leaf optimization
the solution?

DISC

Does Tail-leaf Insertion Work?

100 A
7 tail-BT-tree

% fast-inserts
(@)
(@)

0 0.01 005 0.1 0.5 1 3 D 10
% out-of-order entries (K)

BOSTON ®
UNIVERSITY DISC

Does Tail-leaf Insertion Always Work?

/ Works for fully and very highly sorted data

100 A
7 tail-BT-tree

% fast-inserts
(@)
S

O I I I I I I I I I
0 0.01 0.06 0.1 0.5 1 3 D 10

Tail-leaf's buffer is limited to /6 out-of-order entries (K)

leaf node!

BOSTON ®
UNIVERSITY DISC

Does Tail-leaf Insertion Always Work?

/ Works for fully and very highly sorted data

100 A
7 tail-BT-tree

% fast-inserts
(@)
(@)

O | | | I,’,qquq-I | | | |
0 0.01 0.05 0.1 0.5 1 3 5 10
Tail-leaf's buffer is limited to | /* *ororder entries (K) |
leaf node! Y

Degrades very quickly

BOSTON ®
UNIVERSITY DISC

However, tail-leaf points us to
the right direction...

DISC

Key Idea — Predicting the Ordered LEaf (POLE)

A

Sortedness-aware
predictor

BOSTON
UNIVERSITY

+

il

Leaf appends

Fast ingestion

Q

©
DISC

Key Idea — Predicting the Ordered LEaf (POLE)

A

Sortedness-aware
predictor

BOSTON

UNIVERSITY

+

il

Leaf appends

it could be any node!

Fast ingestion

Q

©
DISC

Insertions in Steady-State

Insert (x, v)

l top-insert

if x is in pole
range & fits

pole tail

BOSTON
UNIVERSITY

Q

©
DISC

When Pole Splits

Legend
p = smallest entry in node previous to pole;

g = smallest entry in pole
r = smallest entry in newly created node
[C]= pointer to pole node

Predict using IKR (In-order Key estimatoR)

q—1p
=g+ .pole.:.. - (1.5
X =q <pole_prevsize) polegi,e - (1.5)

|
density between two non-outliers

pole_prev current newly
pole created

node

BOSTON ®
UNIVERSITY DiSC

When Pole Splits

Legend
if r > x, new node has outliers p = smallest entry in node previous to pole;
q = smallest entry in pole

r = smallest entry in newly created node
[C]= pointer to pole node

Predict using IKR (In-order key estimatoR)

q—7p
=g+ .pole..., - (1.5
X =q <pole_prevsize) poleg;,e - (1.5)

|
density between two non-outliers

pole_ prev current newly
pole created

node

pole stays as is

BOSTON ®
UNIVERSITY DiSC

When Pole Splits

Legend
if r <= x, new node has at least p = smallest entry in node previous to pole;
one non-outlier value q = smallest entry in pole

r = smallest entry in newly created node
[C]= pointer to pole node

Predict using IKR (In-order key estimatoR)

q—7p
=g+ .polewi.. - (1.5
X =q <pole_prevsize) poleg;,e - (1.5)

|
density between two non-outliers

q

pole_prev current Newly
pole created

node

Update pole to newly created node from split

BOSTON ®
UNIVERSITY DISC

Comparing with SWARE

B SWARE M Pole

Buffer pays off: some vs. none fast ingestion

5400

5300 up to 2.05x faster

§ 200 minimal metadata v

E 100 avoids SWARE buffer management v
0

0 1 4 10 25 50 100
% outf-order entries

buffer helps: full bulk loading
Pole is still faster!

BOSTON ®
UNIVERSITY D|SC

Comparing with SWARE

full bulk loading = smaller tree

—
o
o O

BOSTON
UNIVERSITY

B SWARE M Pole

10 25 50 100
% out-of-order entries

0O 1 3 4

—
N

900
600

300

Lookup Latency (ns)

B SWARE ™ Pole

27% 29%

l

O 1 3 4
% out-of-order entries

10 25 50 100

up to 29% faster for point lookups

No buffering = no read overhead!

Q

©
DISC

Future Work - Concurrency in Fast Path

—Random data —Highly sorted data
=
=
g’ throughput drops due to high contention
<
|_
c
.9
O
(@)
<
threads

BOSTON ®
UNIVERSITY DISC

Future Work - Concurrency in Fast Path

—Random data —Highly sorted data

can we increase throughput for fast-path?

@ make threads work for and not against each other!

-—-_-*
-—--*

@ can we use something like consolidation array?

Ingestion Throughput

threads

Q

BOSTON ©
UNIVERSITY DISC

Summary

Scan here to learn
more about our work

ldentify “sortedness” as a resource

Classical indexes do not exploit sortedness by design!

SWARE paradigm & Pole optimization optimize for sortedness

Further research required for learned indexes + joins

Q

BOSTON

©
UNIVERSITY DISC

The Team

Konstantinos

Karatsenidis Andy Huynh

=. Microsoft . mongoDB. B

BOSTON
UNIVERSITY

	Default Section
	Slide 1: Indexing for Near-Sorted Data

	Introduction
	Slide 2: Indexes in Databases
	Slide 3: Indexes in Databases
	Slide 4
	Slide 5
	Slide 8: Irrespective of Sortedness, Same Ingestion Performance
	Slide 9: Are There Faster Alternatives?
	Slide 10: Ideally, Higher Sortedness Should Lead to Faster Ingestion
	Slide 11: Near-Sorted Data is Frequently Found

	Overall Research Focus
	Slide 12: Vision for Sortedness-Aware Indexing
	Slide 13: Vision: Sortedness-Aware Indexes
	Slide 15: Vision: Sortedness-Aware Indexes

	Quantifying Sortedness
	Slide 16: Agenda
	Slide 17: Quantifying Data Sortedness
	Slide 18: Any downsides of the ”simple” metrics?
	Slide 19: Quantifying Data Sortedness
	Slide 20: Quantifying Data Sortedness
	Slide 21: Quantifying Data Sortedness
	Slide 22: Quantifying Data Sortedness
	Slide 23: (K, L)-Sortedness Metric
	Slide 24: (K, L)-Sortedness Metric

	Sortedness Aware Paradigm
	Slide 26: The Sortedness-Aware (SWARE) Paradigm
	Slide 27: Sortedness-Aware (SWARE) Paradigm
	Slide 28: SWARE Ingestions
	Slide 29: SWARE Ingestions
	Slide 30: SWARE Ingestions
	Slide 31: SWARE Ingestions
	Slide 32: SWARE Ingestions
	Slide 33: SWARE Ingestions
	Slide 34: How do lookups work?
	Slide 35: SWARE Lookups
	Slide 36: Experimental Evaluation
	Slide 37: Evaluating SWARE Under Varying Sortedness
	Slide 38: Raw Ingestion Performance
	Slide 39: SWARE Improves Space Utilization
	Slide 40: Summarizing SWARE [ICDE 2023]
	Slide 41: Summarizing SWARE [ICDE 2023]

	Quick Insertion Tree
	Slide 42: Can we achieve fast ingestions without buffering?
	Slide 43: Inserting to the Tail-leaf (PostgreSQL & MySQL)
	Slide 44: Is the tail-leaf optimization the solution?
	Slide 45: Does Tail-leaf Insertion Work?
	Slide 46: Does Tail-leaf Insertion Always Work?
	Slide 47: Does Tail-leaf Insertion Always Work?
	Slide 48: However, tail-leaf points us to the right direction…
	Slide 49: Key Idea – Predicting the Ordered LEaf (POLE)
	Slide 50: Key Idea – Predicting the Ordered LEaf (POLE)
	Slide 51: Insertions in Steady-State
	Slide 52: When Pole Splits
	Slide 53: When Pole Splits
	Slide 54: When Pole Splits
	Slide 55: Comparing with SWARE
	Slide 56: Comparing with SWARE

	Other Index Designs
	Slide 67: Future Work - Concurrency in Fast Path
	Slide 68: Future Work - Concurrency in Fast Path
	Slide 69: Summary
	Slide 70: The Team

