
Indexing for Near-Sorted Data

Subhadeep Sarkar

Matthaios Olma

Aneesh Raman

Manos Athanassoulis

Indexes in Databases

2

B+-trees
R-trees

LSM-trees Skip lists

Indexes in Databases

organize

data

efficient

queries

3

The process of inducing “sortedness” to an otherwise
unsorted data collection

unstructured

data

structured

data

What if data already has some

structure?

What if data already has some

structure?

Position (time)

V
a
lu

e

Position (time)
V

a
lu

e

Near-sorted data

⩬ treated same as

unstructured data!

Irrespective of Sortedness, Same Ingestion Performance

Standard ingestion

SortedScrambled
Increasing data sortedness

In
g

e
st

io
n
 c

o
st

8

Are There Faster Alternatives?

Standard ingestion

Bulk loading

SortedScrambled
Increasing data sortedness

In
g

e
st

io
n
 c

o
st

9

Bulk loading requires all data a priori!

Ideally, Higher Sortedness Should Lead to Faster Ingestion

Standard ingestion

Bulk loading

SortedScrambled
Increasing data sortedness

In
g

e
st

io
n
 c

o
st

10

Near-Sorted Data is Frequently Found

Time Series

Stock market

11

Join/query

efficient reads fast writes

classical indexes carry redundant

effort!

Vision for Sortedness-Aware Indexing

Reduced write-cost if
data is pre-ordered

12

Scan
O(n)

Append
O(1)

Querying
an index

Standard index
ingestion

write cost

re
a

d
 c

o
st

Vision: Sortedness-Aware Indexes

unsorted

sorted

13

Scan
O(n)

Append
O(1)

Querying
an index

Standard index
ingestion

write cost

re
a

d
 c

o
st

Vision: Sortedness-Aware Indexes

unsorted

sorted

15

Scan
O(n)

Append
O(1)

Querying
an index

Standard index
ingestion

write cost

re
a

d
 c

o
st

Agenda

Introduction

Vision

Sortedness Metrics

Sortedness Aware (SWARE) Indexing

A Simpler Design

Open Questions

Quantifying Data Sortedness

17

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

Any downsides of the
”simple” metrics?

Quantifying Data Sortedness

6 7 8 9 10 1 2 3 4 5

19

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

Quantifying Data Sortedness

6 7 8 9 10 1 2 3 4 5

global disorder

20

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

Quantifying Data Sortedness

2 1 4 3 6 5 8 7 10 9

21

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

Quantifying Data Sortedness

2 1 4 3 6 5 8 7 10 9

local disorder
22

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

(K, L)-Sortedness Metric

1 8 3 4 5 6 7 2 9 10

#. unordered entries = K

[inspired by BenMoshe, ICDT 2011] 23

(K, L)-Sortedness Metric

1 8 3 4 5 6 7 2 9 10

#. unordered entries

max. displacement among unordered entries

= K

= L

[inspired by BenMoshe, ICDT 2011] 24

The Sortedness-Aware
(SWARE) Paradigm

Sortedness-Aware (SWARE) Paradigm

opportunistic

bulk loading

increased fill

and split factor

SWARE framework can be applied to any tree-index!

intelligent

buffering

SWARE Ingestions

...

B+-tree

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

tail leaf node non overlapping pages may move

flush 3 pages

flush non-overlapping pages to treenon-overlapping pages

SWARE Ingestions

...

B+-tree

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

flush 3 pages

bulk load page-by-page if in order

tail leaf node

non-overlapping pages

non overlapping pages may move

flush non-overlapping pages to tree

SWARE Ingestions

...

B+-tree

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

tail leaf node

non-overlapping pages

bulk load page-by-page if in order

non overlapping pages may move

flush non-overlapping pages to tree

SWARE Ingestions

...

B+-tree

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

move & sort remaining entries

tail leaf node

non-overlapping pages

bulk load page-by-page if in order

non overlapping pages may move

flush non-overlapping pages to tree

SWARE Ingestions

...

B+-tree

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

update non-overlapping pages

tail leaf node

non-overlapping pages

bulk load page-by-page if in order

non overlapping pages may move

flush non-overlapping pages to tree

SWARE Ingestions

...

B+-tree

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

tail leaf node

non-overlapping pages

fully sorted pages
bulk load page-by-page if in order

non overlapping pages may move

flush non-overlapping pages to tree

How do lookups work?

SWARE Lookups

...

B+-tree

Buffer

SWARE Buffer

Leaf pages

Zonemap
(min-max)

Global Bloom filter

Per-page Bloom filters

Global BF. helps skip buffer probe

Per-page BFs + Zonemaps eliminate
page-scans

sorted section uses faster interpolation
searchtail leaf node

non-overlapping pages

fully sorted pages

Experimental Evaluation

System Setup:

- Intel Xeon Gold 5230

- 2.1GHZ processor w. 20 cores

- 384GB RAM, 28MB L3 cache

Index Setup:

- Buffer = 40MB; flush <= 50%

- BFs = 10 BPK; Murmur Hash

- Split at 80%

B+-tree design inspired by STX::B-tree can also work as Bε-tree

Evaluating SWARE Under Varying Sortedness

0

2

4

6

8

10

10:90 25:75 40:60 50:50 60:40 75:25 90:10

S
p

e
e
d

u
p

Read-Write Ratio

B-tree cost Scrambled Less sorted Near-sorted Fully sorted

up to 4x for mixed

reads & writes

up to 9x for write-heavy workloads

K=10%, L=5%K=L=50%

Raw Ingestion Performance

ingestion latency reduced between 27-90%

0

5

10

15

0 1 5 10 25 50

In
se

rt
 L

a
te

n
cy

 (
𝝻

s)

% out-of-order entries

B-tree SA B-tree

0%

25%

50%

75%

100%

0 1 5 10 25 50

F
ra

ct
io

n
 o

f
in

se
rt

io
n

s

% out-of-order entries

top-insert bulk-load

bulk loading maximized with

high data sortedness

SWARE Improves Space Utilization

increased fill/split factor helps reduce memory footprint

0

0.5

1

1.5

2

2.5

Fully sorted Near-sorted Less-sorted

M
e
m

o
ry

 f
o

o
tp

ri
n

t
(#

 n
o

d
e
s)

M
il
li
o

n
s

B-tree SA B-tree

0.52x 0.6x

Summarizing SWARE [ICDE 2023]

opportunistic

bulk loading

intelligent

buffering

Any downsides to wider applicability?

Improves performance by

exploiting sortedness

Summarizing SWARE [ICDE 2023]

opportunistic

bulk loading

intelligent

buffering

Increases Complexity in Design!

Improves performance by

exploiting sortedness

Can we achieve fast ingestions without
buffering?

Inserting to the Tail-leaf (PostgreSQL & MySQL)

Normal Insertion (top-insert) Tail-leaf Insertion

Insert Key 65 tail-leaf-ptrInsert Key 65 min_val(55)

45 55

5 10 15 20 25 30 35 40 45 50

35

15 25

55 60

add key to tail

leaf directly!

is 65 >= min_val?
yes!

Is the tail-leaf optimization
the solution?

Does Tail-leaf Insertion Work?

Does Tail-leaf Insertion Always Work?

Works for fully and very highly sorted data

Tail-leaf’s buffer is limited to

leaf node!

Does Tail-leaf Insertion Always Work?

Works for fully and very highly sorted data

Degrades very quickly

Tail-leaf’s buffer is limited to

leaf node!

However, tail-leaf points us to
the right direction…

Key Idea – Predicting the Ordered LEaf (POLE)

Sortedness-aware

predictor
Leaf appends Fast ingestion

Key Idea – Predicting the Ordered LEaf (POLE)

Sortedness-aware

predictor
Leaf appends Fast ingestion

it could be any node!

Insertions in Steady-State

B+-tree

Insert (x, v)

pole

if x is in pole

range & fits

top-insert

tail

…

When Pole Splits

B+-tree

current

pole

Legend

p = smallest entry in node previous to pole;

q = smallest entry in pole

r = smallest entry in newly created node

= pointer to pole node

Predict using IKR (In-order Key estimatoR)

𝑥 = 𝑞 +
𝑞 − 𝑝

𝑝𝑜𝑙𝑒_𝑝𝑟𝑒𝑣𝑠𝑖𝑧𝑒
⋅ 𝑝𝑜𝑙𝑒𝑠𝑖𝑧𝑒 ⋅ (1.5)

density between two non-outliers
pole_prev newly

created

node

p q r

When Pole Splits

B+-tree

current

pole

Legend

p = smallest entry in node previous to pole;

q = smallest entry in pole

r = smallest entry in newly created node

= pointer to pole node

Predict using IKR (In-order key estimatoR)

𝑥 = 𝑞 +
𝑞 − 𝑝

𝑝𝑜𝑙𝑒_𝑝𝑟𝑒𝑣𝑠𝑖𝑧𝑒
⋅ 𝑝𝑜𝑙𝑒𝑠𝑖𝑧𝑒 ⋅ (1.5)

pole_prev newly

created

node

p q r

if r > x, new node has outliers

pole stays as is

density between two non-outliers

When Pole Splits

B+-tree

current

pole

Legend

p = smallest entry in node previous to pole;

q = smallest entry in pole

r = smallest entry in newly created node

= pointer to pole node

Predict using IKR (In-order key estimatoR)

𝑥 = 𝑞 +
𝑞 − 𝑝

𝑝𝑜𝑙𝑒_𝑝𝑟𝑒𝑣𝑠𝑖𝑧𝑒
⋅ 𝑝𝑜𝑙𝑒𝑠𝑖𝑧𝑒 ⋅ (1.5)

pole_prev newly

created

node

p q r

if r <= x, new node has at least

one non-outlier value

Update pole to newly created node from split

density between two non-outliers

Comparing with SWARE

up to 2.05x faster

minimal metadata ✓

0

100

200

300

400

0 1 3 4 10 25 50 100

In
se

rt
 L

a
te

n
cy

 (
n
s)

% out-of-order entries

SWARE Pole

avoids SWARE buffer management ✓

buffer helps: full bulk loading

Pole is still faster!

Buffer pays off: some vs. none fast ingestion

2.05x
2x

1.85x
1.55x

Comparing with SWARE

0

100

200

300

400

0 1 3 4 10 25 50 100

In
se

rt
 L

a
te

n
cy

 (
n

s)

% out-of-order entries

SWARE Pole

0

300

600

900

1200

0 1 3 4 10 25 50 100

Lo
o

k
u

p
 L

a
te

n
cy

 (
n
s)

% out-of-order entries

SWARE Pole

up to 29% faster for point lookups

No buffering ⇒ no read overhead!

2.05x
2x

1.85x
1.55x

27% 29%

full bulk loading ⇒ smaller tree

Future Work - Concurrency in Fast Path
In

g
e
s
ti

o
n

 T
h

ro
u

g
h

p
u

t

threads

Random data Highly sorted data

throughput drops due to high contention

Future Work - Concurrency in Fast Path
In

g
e
s
ti

o
n

 T
h

ro
u

g
h

p
u

t

threads

Random data Highly sorted data

can we increase throughput for fast-path?

make threads work for and not against each other!

can we use something like consolidation array?

Summary

Identify “sortedness” as a resource

Classical indexes do not exploit sortedness by design!

SWARE paradigm & Pole optimization optimize for sortedness

Further research required for learned indexes + joins

Scan here to learn

more about our work

The Team

Aneesh Raman
Konstantinos

Karatsenidis
Andy Huynh

Jinqi Lu Subhadeep Sarkar Matthaios OlmaShaolin Xie

	Default Section
	Slide 1: Indexing for Near-Sorted Data

	Introduction
	Slide 2: Indexes in Databases
	Slide 3: Indexes in Databases
	Slide 4
	Slide 5
	Slide 8: Irrespective of Sortedness, Same Ingestion Performance
	Slide 9: Are There Faster Alternatives?
	Slide 10: Ideally, Higher Sortedness Should Lead to Faster Ingestion
	Slide 11: Near-Sorted Data is Frequently Found

	Overall Research Focus
	Slide 12: Vision for Sortedness-Aware Indexing
	Slide 13: Vision: Sortedness-Aware Indexes
	Slide 15: Vision: Sortedness-Aware Indexes

	Quantifying Sortedness
	Slide 16: Agenda
	Slide 17: Quantifying Data Sortedness
	Slide 18: Any downsides of the ”simple” metrics?
	Slide 19: Quantifying Data Sortedness
	Slide 20: Quantifying Data Sortedness
	Slide 21: Quantifying Data Sortedness
	Slide 22: Quantifying Data Sortedness
	Slide 23: (K, L)-Sortedness Metric
	Slide 24: (K, L)-Sortedness Metric

	Sortedness Aware Paradigm
	Slide 26: The Sortedness-Aware (SWARE) Paradigm
	Slide 27: Sortedness-Aware (SWARE) Paradigm
	Slide 28: SWARE Ingestions
	Slide 29: SWARE Ingestions
	Slide 30: SWARE Ingestions
	Slide 31: SWARE Ingestions
	Slide 32: SWARE Ingestions
	Slide 33: SWARE Ingestions
	Slide 34: How do lookups work?
	Slide 35: SWARE Lookups
	Slide 36: Experimental Evaluation
	Slide 37: Evaluating SWARE Under Varying Sortedness
	Slide 38: Raw Ingestion Performance
	Slide 39: SWARE Improves Space Utilization
	Slide 40: Summarizing SWARE [ICDE 2023]
	Slide 41: Summarizing SWARE [ICDE 2023]

	Quick Insertion Tree
	Slide 42: Can we achieve fast ingestions without buffering?
	Slide 43: Inserting to the Tail-leaf (PostgreSQL & MySQL)
	Slide 44: Is the tail-leaf optimization the solution?
	Slide 45: Does Tail-leaf Insertion Work?
	Slide 46: Does Tail-leaf Insertion Always Work?
	Slide 47: Does Tail-leaf Insertion Always Work?
	Slide 48: However, tail-leaf points us to the right direction…
	Slide 49: Key Idea – Predicting the Ordered LEaf (POLE)
	Slide 50: Key Idea – Predicting the Ordered LEaf (POLE)
	Slide 51: Insertions in Steady-State
	Slide 52: When Pole Splits
	Slide 53: When Pole Splits
	Slide 54: When Pole Splits
	Slide 55: Comparing with SWARE
	Slide 56: Comparing with SWARE

	Other Index Designs
	Slide 67: Future Work - Concurrency in Fast Path
	Slide 68: Future Work - Concurrency in Fast Path
	Slide 69: Summary
	Slide 70: The Team

