
Class 18

Prof. Subhadeep Sarkar

lab
10
10
10
10
10
10
10
11

0
0
1
0
0
0
0
1

1
0
1
1
0
0

10
10

0
0
1
1
1
1
0
0

1
10
10
10
10
10
10
100

0
0
0
0
0
0

10
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1

lab
10
10
10
10
10
10
10
11

0
0
1
0
0
0
0
1

1
0
1
1
0
0

10
10

0
0
1
1
1
1
0
0

1
10
10
10
10
10
10
100

0
0
0
0
0
0

10
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1

COSI 167A
Advanced Data Systems

Indexing + Modern Hardware Trends

https://ssd-brandeis.github.io/COSI-167A/

https://ssd-brandeis.github.io/COSI-167A/

Class logistics
and administrivia

The mid-semester project report is due today (11:59 PM).

5 weeks remaining until the end of semester. Use your time wisely!

Final project report has 2 parts.
Preliminary project report due on Dec 3.
Followed by project presentation (plan for a 15-min presentation).
Final project report due on Dec 10.

Today in COSI 167A
What’s on the cards?

summarizing indexing techniques

modern hardware trends

What is an index?
The oracle of DBMSs!

Index
auxiliary data structure that helps find target data quickly
typically, light-weight, small enough to fit in memory
special form of < key, value >

position/location/rowID/primary key/…indexed attribute

What are the possible index designs?
From B-trees to cracking

index data organization remark

B+-tree Sorted & partitioned Partition k-ways recursively

LSM-tree Partially sorted Optimize inserts

Radix tree Radix-based Partition using key radix

Hash index Hash buckets Partition by hashing the key

Bitmap index None Succinct membership represention

Zonemap None Use metadata to skip access

Cracking Cracked & eventually sorted Query-driven partitioning

What are the possible index designs?
From B-trees to cracking

index data organization remark

B+-tree Sorted & partitioned Partition k-ways recursively

LSM-tree Partially sorted Optimize inserts

Radix tree Radix-based Partition using key radix

Hash index Hash buckets Partition by hashing the key

Bitmap index None Succinct membership represention

Zonemap None Use metadata to skip access

Cracking Cracked & eventually sorted Query-driven partitioning

What are the possible index designs?
From B-trees to cracking

index data organization remark

B+-tree Sorted & partitioned Partition k-ways recursively

LSM-tree Partially sorted Optimize inserts

Radix tree Radix-based Partition using key radix

Hash index Hash buckets Partition by hashing the key

Bitmap index None Succinct membership represention

Zonemap None Use metadata to skip access

Cracking Cracked & eventually sorted Query-driven partitioning

What are the possible index designs?
From B-trees to cracking

index data organization remark

B+-tree Sorted & partitioned Partition k-ways recursively

LSM-tree Partially sorted Optimize inserts

Radix tree Radix-based Partition using key radix

Hash index Hash buckets Partition by hashing the key

Bitmap index None Succinct membership represention

Zonemap None Use metadata to skip access

Cracking Cracked & eventually sorted Query-driven partitioning

What are the possible index designs?
From B-trees to cracking

index data organization remark

B+-tree Sorted & partitioned Partition k-ways recursively

LSM-tree Partially sorted Optimize inserts

Radix tree Radix-based Partition using key radix

Hash index Hash buckets Partition by hashing the key

Bitmap index None Succinct membership represention

Zonemap None Use metadata to skip access

Cracking Cracked & eventually sorted Query-driven partitioning

What are the possible index designs?
From B-trees to cracking

index data organization remark

B+-tree Sorted & partitioned Partition k-ways recursively

LSM-tree Partially sorted Optimize inserts

Radix tree Radix-based Partition using key radix

Hash index Hash buckets Partition by hashing the key

Bitmap index None Succinct membership represention

Zonemap None Use metadata to skip access

Cracking Cracked & eventually sorted Query-driven partitioning

What are the possible index designs?
From B-trees to cracking

index data organization remark

B+-tree Sorted & partitioned Partition k-ways recursively

LSM-tree Partially sorted Optimize inserts

Radix tree Radix-based Partition using key radix

Hash index Hash buckets Partition by hashing the key

Bitmap index None Succinct membership represention

Zonemap None Use metadata to skip access

Cracking Cracked & eventually sorted Query-driven partitioning

What are the possible index designs?
From B-trees to cracking

index point queries short range
queries

long range
queries data skew updates

B+-tree

LSM-tree

Radix tree

Hash index

Bitmap index

Zonemap

Cracking

B+-tree
The most popular index data structure

10

20

35

6 10 20 32 40 45

< 20 >= 20

< 10 >= 10 < 35 >= 35

B+-tree
The most popular index data structure

10

20

35

6 10 20 32 40 45

< 20 >= 20

< 10 >= 10 < 35 >= 35

10

Search begins at root, and key comparisons direct it to a leaf

Point lookups are super-efficient

Range lookups can scan sequentially

Thought Experiment 1
What about skewed data?

It does well!

What are the possible index designs?
From B-trees to cracking

index point queries short range
queries

long range
queries data skew updates

B+-tree

LSM-tree

Radix tree

Hash index

Bitmap index

Zonemap

Cracking

What are the possible index designs?
From B-trees to cracking

index point queries short range
queries

long range
queries data skew updates

B+-tree

LSM-tree

Radix tree

Hash index

Bitmap index

Zonemap

Cracking

Thought Experiment 2
What about growing data size?
tree grows & so do costs!

Radix trees
A special case of tries and prefix B-trees

Idea: use common prefixes for internal nodes to reduce size/height!
max. tree hieght = length of the longest key

what about integer keys?

Radix trees
A special case of tries and prefix B-trees

Idea: use common prefixes for internal nodes to reduce size/height!

max. tree hieght = length of the longest key

max. tree hieght?
size of integer

Radix trees
A special case of tries and prefix B-trees

Idea: use common prefixes for internal nodes to reduce size/height!

max. tree hieght
=

length of the longest key
max. tree hieght

=
size of integer

Thought Experiment 3
What about data skew?

radix trees perform poorly!

What are the possible index designs?
From B-trees to cracking

index point queries short range
queries

long range
queries data skew updates

B+-tree

LSM-tree

Radix tree

Hash index

Bitmap index

Zonemap

Cracking

Hash indexes
Using fast CPU cycles to our advantage

Idea: a function to map a larger (infinite) space to a smaller finite space

h

hash
function

0

1

2

N-1

buckets

input data, k h(k)%N
overflow
pages

an ideal hash function would distribute keys uniformly

What are the possible index designs?
From B-trees to cracking

index point queries short range
queries

long range
queries data skew updates

B+-tree

LSM-tree

Radix tree

Hash index

Bitmap index

Zonemap

Cracking

Bitmap index
Fast, light-weight but with limited applicability

Use case: few distinct values repeating severally

30
20
30
10
20
10
30
20

Column A

Bitmap index
Fast, light-weight but with limited applicability

Use case: few distinct values repeating severally

30
20
30
10
20
10
30
20

Column A
0
0
0
1
0
1
0
0

A=10
0
1
0
0
1
0
0
1

A=20
1
0
0
0
0
0
1
0

A=30

Bitmap index
Fast, light-weight but with limited applicability

Use case: few distinct values repeating severally

30
20
30
10
20
10
30
20

Column A
0
0
0
1
0
1
0
0

A=10
0
1
0
0
1
0
0
1

A=20
1
0
0
0
0
0
1
0

A=30 Advantages:

Bitmap index
Fast, light-weight but with limited applicability

Use case: few distinct values repeating severally

30
20
30
10
20
10
30
20

Column A
0
0
0
1
0
1
0
0

A=10
0
1
0
0
1
0
0
1

A=20
1
0
0
0
0
0
1
0

A=30 Advantages:
speed & size

compact representation of query result
query result is readily available

bitvectors
fast Boolean operators (AND/OR/NOT)
bitwise ops faster than looping over metadata

Limitations:

Bitmap index
Fast, light-weight but with limited applicability

Use case: few distinct values repeating severally

30
20
30
10
20
10
30
20

Column A
0
0
0
1
0
1
0
0

A=10
0
1
0
0
1
0
0
1

A=20
1
0
0
0
0
0
1
0

A=30
Limitations:

index size space-inefficient for domains
with large cardinality
imagine column A has 100M entries

index size = 12.5 MB per distinct value

solution?
run length encoding

Bitmap index
Fast, light-weight but with limited applicability

0
0
0
0
0
0
0
0
0
0
0
1
0
1

0
1
0
1

x11

raw bitvector

encoded
bitvector

RLE

Thought Experiment 4
What about updates?

decompressing and re-compressing

Bitmap index
Fast, light-weight but with limited applicability

0
0
0
0
0
0
0
0
0
0
0
1
0
1

0
1
0
1

x11

raw bitvector

encoded
bitvector

RLE
update RID 10

0
0
0
0
0
0
0
0
0
0
0
1
0
1

decode

update

0
0
0
0
0
0
0
0
0
0
1
1
0
1

flip bit

RLE 0
1
1
0
1

re-encoded
bitvector

x10

re-encode

What are the possible index designs?
From B-trees to cracking

index point queries short range
queries

long range
queries data skew updates

B+-tree

LSM-tree

Radix tree

Hash index

Bitmap index

Zonemap

Cracking

What are the possible index designs?
From B-trees to cracking

index point queries short range
queries

long range
queries data skew updates

B+-tree

LSM-tree

Radix tree

Hash index

Bitmap index

Zonemap

Cracking

Cracking
Indexing on the fly

Idea: take hints from queries to create partitions
gradually moving toward a sorted layout

32
19
11
6

123
55
12
78

Column A

Cracking
Indexing on the fly

Idea: take hints from queries to create partitions
gradually moving toward a sorted layout

32
19
11
6

123
55
12
78

Column A

search < 15

32
19
11
6

123
55
12
78

Column A

Cracking
Indexing on the fly

Idea: take hints from queries to create partitions
gradually moving toward a sorted layout

32
19
11
6

123
55
12
78

Column A
search < 15 11

6
12
32
19

123
55
78

Column A

< 15

search > 90

Cracking
Indexing on the fly

Idea: take hints from queries to create partitions
gradually moving toward a sorted layout

32
19
11
6

123
55
12
78

Column A
search < 15 11

6
12
32
19

123
55
78

Column A

< 15

search > 90 11
6

12
32
19
123
55
78

Column A

< 15

Cracking
Indexing on the fly

Idea: take hints from queries to create partitions
gradually moving toward a sorted layout

32
19
11
6

123
55
12
78

Column A
search < 15 11

6
12
32
19

123
55
78

Column A

< 15

search > 90 11
6

12
32
19
55
78
123

Column A

< 15

> 90

Cracking
Indexing on the fly

Idea: take hints from queries to create partitions
gradually moving toward a sorted layout

32
19
11
6

123
55
12
78

Column A
search < 15 11

6
12
32
19

123
55
78

Column A

< 15

search > 90 11
6

12
32
19
55
78
123

Column A

< 15

> 90

> 10 & < 30

Cracking
Indexing on the fly

Idea: take hints from queries to create partitions
gradually moving toward a sorted layout

32
19
11
6

123
55
12
78

Column A
search < 15 11

6
12
32
19

123
55
78

Column A

< 15

search > 90 11
6

12
32
19
55
78
123

Column A

< 15

> 90

> 10 & < 30 6
11
12
19
32
55
78
123

Column A

< 15

> 90

> 10

< 30

Cracking
Indexing on the fly

32
19
11
6

123
55
12
78

Column A
search < 15 11

6
12
32
19

123
55
78

Column A

< 15

search > 90 11
6

12
32
19
55
78
123

Column A

< 15

> 90

> 10 & < 30 6
11
12
19
32
55
78
123

Column A

< 15

> 90

> 10

< 30

Thought Experiment 5
What about updates? Lazy merging

What are the possible index designs?
From B-trees to cracking

index point queries short range
queries

long range
queries data skew updates

B+-tree

LSM-tree

Radix tree

Hash index

Bitmap index

Zonemap

Cracking

How to decide which index to use?

How to decide which index to use?
The million dollar question

Break it down to
design primitives!

Index design primitives
Asking the fundamental design questions

How to physically organize the data?

How to search through the data?

Can we accelerate search using metadata?how we store data

how we
access data

How to update or add new data?

Index design primitives
Asking the fundamental design questions

Global data organization

how we store data

how we
access data

How to search through the data?

Can we accelerate search using metadata?

How to update or add new data?

sorted
unsorted
logging

Index design primitives
Asking the fundamental design questions

Global data organization

how we store data

how we
access data

sorted
unsorted
logging

Global search algorithm
scan
tight-loop search
direct addressing

Can we accelerate search using metadata?

How to update or add new data?

Index design primitives
Asking the fundamental design questions

Global data organization

how we store data

how we
access data

sorted
unsorted
logging

Global search algorithm
scan
tight-loop search
direct addressing

Indexing technique trees (radix/B+)
Hash-based

zonemaps/imprints

How to update or add new data?

Index design primitives
Asking the fundamental design questions

Global data organization

how we store data

how we
access data

sorted
unsorted
logging

Global search algorithm
scan
tight-loop search
direct addressing

Indexing technique trees (radix/B+)
Hash-based

zonemaps/imprints

Data modification policy
in-place
out-of-place
deffered in-place

Modern Hardware

Recap: Storage hierarchy
How data moves!

Faster
Expensive
Smaller

Volatile

Non-volatile

Random access
Byte accessible

Sequential access
Block accessible

read
write

magnetic storage (HDD/tape)

flash storage (SSD/NVM)

DRAM / memory

on-board cache

on-chip caches

registers

CPU

Memory wall

magnetic storage

Try not to jump the wall

flash storage

memory

on-board cache

on-chip cache

register

CPU

computations
happen here

10 ns

100 ns

be careful when you go below the green line4 ns

1 ns

Memory wall

magnetic storage

Try not to jump the wall

flash storage

memory

on-board cache

on-chip cache

register

CPU

computations
happen here

10 ns

100 ns

be careful when you go below the green line

4 ns

1 ns

CPU perf in
crease

DRAM perf increase

pe
rfo

rm
an

ce
time

old times

memory wall

doesn’t matter how much
faster CPUs become!

Can we optimize futher if data fit in memory?

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what is a chip?
what is a socket?

what is a core?Chip 1 Chip 2

Logical vs. Physical core

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what if the target data is in the
core’s private L1?

?

A

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what if the target data is in the
core’s private L1?

?

A

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what if the target data is in the
core’s private L2?

?

A

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what if the target data is in the
core’s private L2?

?

A

< 10 cycles

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what if the target data is in the
private cache of another core?

< 10 cycles

?

A

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what if the target data is in the
private cache of another core?

< 10 cycles

?

A
A

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what if the target data is in the
private cache of another core?

< 10 cycles

?

A

A
A

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what if the target data is in the
private cache of another core?

< 10 cycles

?

A

A

A

50 cycles

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what if the target data is in the
another chip?

< 10 cycles

?

A

50 cycles

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what if the target data is in the
another chip?

< 10 cycles

?

A

50 cycles

A

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what if the target data is in the
another chip?

< 10 cycles

?

A

50 cycles

A

A

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

what if the target data is in the
another chip?

< 10 cycles

?

A

50 cycles

A

500 cycles

A

Chip 1 Chip 2

Cache hierarchy
Optimizing data access

internals of a multisocket multicore server

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

L1

L2

Memory controller

Inter-socket links

Core Core Core Core

L1 L1 L1

L2 L2 L2

L3

< 10 cycles 50 cycles 500 cycles
Thought Experiment 6

Same memory access time?

?

A A

Non-uniform
memory access
(NUMA)

We data is placed in cache matters!

Disks
What are they really?

Disks
What are they really?

Head
Sector

Track Platter
Cylinder

Spindle

arm movement

Arm assembly moves in and
out to point to the correct track

Platters move around the
spindle to get the desired sector

One head reads/writes at a time

Disks
What are they really?

Head
Sector

Track Platter
Cylinder

Spindle

arm movement

Time to access a page of data:
Find the track (move arm to track)1
seek latency

Find the sector (rotate the platters)2
rotational latency

Read/Write page (head does this)3
transfer latency

SLOW!

Flash disks
Around for >30 years, now!

Writes, reads, and deletes happen electronically!
no mechanical component

But, random writes are slower than random reads

Data is still stored in pages (typically 4KB)

Random reads are almost as fast as sequential reads
the 10%-20% difference in speed owes to prefetching

an asymmetry exists between reads and writes on SSDs

Internals of flash disks
Let’s have a sneak peak

Flash
controller

Flash chip Flash chip Flash chip

Flash chip Flash chip Flash chip

Internal
memory

Internal
CPU

Interface
(SATA / PCI)

SSD

Reads/Writes can happen
parallely in multiple flash chips

Die Die

Flash chip

Internals of flash disks
Let’s have a sneak peak

Flash
controller

Flash chip Flash chip Flash chip

Flash chip Flash chip Flash chip

Internal
memory

Internal
CPU

Interface
(SATA / PCI)

Plane 1 Plane 2 Plane 1 Plane 2

Plane 3 Plane N Plane 3 Plane N

Block 1
Block 2

Block K

Plane

...
Page Page Page

Page Page Page

Page Page Page

Block

SSD

Writes in SSDs
Writes are out of place

Free

Block 0

Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

B’ Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

B’ Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

B’ Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

B’ C’ Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

B’ C’ D’

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

B’ C’ D’

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Insert
M, N, O, P, Q, R

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

B’ C’ D’

M N O

P Q R

Free Free Free

Free Free Free

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Insert
M, N, O, P, Q, R

Update
M, N, O, P, Q, R

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

B’ C’ D’

Block 1

Insert
A, B, C, D, E, F, G, H

Update
A, B, C, D

Insert
M, N, O, P, Q, R

Update
M, N, O, P, Q, R

M’ N’ O’

P’ Q’ R’

M N O

P Q R

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

B’ C’ D’

M N O

P Q R

M’ N’ O’

P’ Q’ R’

Block 1

What if all blocks are full

Garbage
Collection

1 keep track of valid pages

E F

G H A’

B’ C’ D’

M’ N’ O’

P’ Q’ R’

Writes in SSDs
Writes are out of place

A

Block 0

B C

D E F

G H A’

B’ C’ D’

M N O

P Q R

M’ N’ O’

P’ Q’ R’

Block 1

What if all blocks are full

Garbage
Collection

E F G H A’ B’ C’ D’ M’ N’ O’ P’ Q’ R’valid pages

1 keep track of valid pages
2 erase all pages

Writes in SSDs
Writes are out of place

Erased

Block 0

Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Block 1

What if all blocks are full

Garbage
Collection

E F G H A’ B’ C’ D’ M’ N’ O’ P’ Q’ R’valid pages

1

2

keep track of valid pages
erase all pages

Writes in SSDs
Writes are out of place

Erased

Block 0

Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Block 1

What if all blocks are full

Garbage
Collection

E F G H A’ B’ C’ D’ M’ N’ O’ P’ Q’ R’valid pages

1

2

keep track of valid pages
erase all pages

3 write back valid pages

Writes in SSDs
Writes are out of place

E

Block 0

F G

H A’ B’

C’ D’ M’

N’ O’ P’

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

Block 1

What if all blocks are full

Garbage
Collection

1

2

keep track of valid pages
erase all pages

3 write back valid pages

Writes in SSDs
Writes are out of place

E

Block 0

F G

H A’ B’

C’ D’ M’

N’ O’ P’

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Thought Experiment 7
Any limitations?

1

2

high write amplification
limited device lifetime

Now, think of
LSM on SSDs!

Summary
The key takeaways

Data placement is critical!
be it on storage, memory or cache!

Flash operates electronically and is fast!

Understanding the underlying hardware is critical for performance

updates are out of place; suffers from high write amplification

hardware-aware indexes, caching, and access methods

Row stores vs. Column stores

Next time in COSI 167A

Class 18

Prof. Subhadeep Sarkar

lab
10
10
10
10
10
10
10
11

0
0
1
0
0
0
0
1

1
0
1
1
0
0

10
10

0
0
1
1
1
1
0
0

1
10
10
10
10
10
10
100

0
0
0
0
0
0

10
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1

lab
10
10
10
10
10
10
10
11

0
0
1
0
0
0
0
1

1
0
1
1
0
0

10
10

0
0
1
1
1
1
0
0

1
10
10
10
10
10
10
100

0
0
0
0
0
0

10
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1

COSI 167A
Advanced Data Systems

Indexing + Modern Hardware Trends

https://ssd-brandeis.github.io/COSI-167A/

https://ssd-brandeis.github.io/COSI-167A/

