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Introduction
● Handling large data in modern applications
● Addressing concurrency
● Current systems and key-value stores
● What is FASTER solving?
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Data-Intensive Modern Applications

● Large data sets 
● Processed remotely by cloud 

applications

● Update-intensive data
● Larger-than-memory

Large amounts of data 
created on edge devices

Monitoring and processing 
data in real time



Current Challenges

Advertising platform storing 
per-user statistics for billions 

of users

Monitoring systems updating 
per-device CPU metrics

Efficiently retrieve 
user-specific data without a 

range scan

Offline analytics: calculating 
average clickthrough rate

Search engine actively 
processing data for fraction 

of billion of users

Multiple threads sharing data 
without slowing down 

performance

How can we manage 
large amounts of data  

at scale?

How can we handle 
high update rates  

efficiently?

How can we better 
serve data when 

queries are highly 
localized ?

How can we optimize 
for fast point 
operations ?

How can we make 
data updates readily 
usable  for analytics?

How can we support 
concurrency without 

hurting 
performance?



Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably. 

FOR THE CLASS:

What would you do to facilitate 
concurrency?



Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably. 

FOR THE CLASS:

What would you do to facilitate 
concurrency?

For thread safe access:
Latches – exclusive access to protected data 

structures for threads

Key Concepts

● Latch systems use latches for thread-safe 
access
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Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably. 

FOR THE CLASS:

What is one issue when trying to achieve 
synchronization using latch systems?

Can increase waiting times!

Key Concepts

● Latch systems use latches for thread-safe 
access

○ Issue: has delays + contention



Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably. 

FOR THE CLASS:

What would you do if you wanted to 
avoid  latches?

Key Concepts

● Latch systems use latches for thread-safe 
access

○ Issue: has delays + contention



Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably. 

FOR THE CLASS:

What would you do if you wanted to 
avoid  latches?

Latch-free system examples:
Atomic operations or epoch-protection

Key Concepts

● Latch systems use latches for thread-safe 
access

○ Issue: has delays + contention
● Latch-free systems avoids latches by 

using atomic operations or 
epoch-protection



Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably. 

Key Concepts
● Latch systems use latches 

for thread-safe access
○ Issue: has delays + 

contention
● Latch-free systems avoids 

latches by using atomic 
operations or 
epoch-protection

Scalability

scaling efficiently 
across threads and 

hardware

Contention

no more multiple 
threads competing 
for same resource

Synchronization

reducing waiting times 
and independent 
thread operation

Challenges latch-free 
systems address
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Current 
Systems

Pure In-Memory 
Data Structure

Example: Intel TBB Hash Map
+ Optimized for concurrency
+ Supports in-place updates
– Less efficient for managing 

larger-than-memory data



Example: Intel TBB Hash Map
+ Optimized for concurrency
+ Supports in-place updates
– Less efficient for managing 

larger-than-memory data

Current 
Systems

Pure In-Memory 
Data Structure

FOR THE CLASS:

Why is this solution expensive?



Example: Intel TBB Hash Map
+ Optimized for concurrency
+ Supports in-place updates
– Less efficient for managing 

larger-than-memory data

Current 
Systems

Pure In-Memory 
Data Structure

FOR THE CLASS:

Why is this solution expensive?

Under-utilization of machine resources
Need a structure that efficiently balance memory 

and storage use + balance larger than memory



What FASTER  aims to solve

Concurrency In-place updates Larger than 
memory data



What is FASTER ?
Concurrent latch-free key-value store with in-place updates

T1

T2

T3

T4

Hash index HybridLog

Header | Key | Value

…



Solution
● Epoch-Protection Framework
● FASTER Architecture Overview
● FASTER's Hash Index
● In-Memory Key Value Stores
● HybridLog
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Epoch-Protection 
Framework
Ensuring Efficient, Scalable Synchronization 
Across Threads



What is Epoch Protection?

Trigger Actions
Shared atomic counter (E)
Thread has local epoch

Lazy synchronization 
(refreshed periodically)

Tracks maximal safe epoch
Updated when threads refresh

Drain-list holds <epoch, action> pairs
Actions triggered when epoch is safe

Executed using atomic operation

Epoch Mechanism Global Counter 



Why is this framework important?

Latch-Free and 
Scalability

Alleviates thread 
coordination cost

Independent thread operations
Maintains global consistency

Avoids latches
Improves scalability using 

scalable thread model

Lazy 
Synchronization

Efficient 
Concurrency



Lazy Synchronization (Epoch-Protection)

Thread 1

Thread 2

Thread 3

Thread 4

E
Shared counter 
(current epoch) 2 3 4 5 Increasing Time
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Lazy Synchronization (Epoch Protection)

1Thread 1

Thread 2

Thread 3

Thread 4

E
Shared counter 
(current epoch) 2 3 4 5 Increasing Time

Each thread keeps stale local epoch 
counter copied from E

3 4 5

1 2 4 5

1 3 4 5

1 2 3 4 5
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Lazy Synchronization (Epoch Protection)

1Thread 1

Thread 2

Thread 3

Thread 4

E
Shared counter 
(current epoch)

Increasing Time
Epoch c is considered safe if all thread-local 

values are greater than c

3 4 5

1 2 4 5

1 3 4 5

1 2 3 4 5

safe epochs

1 2 3 4
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Lazy Synchronization (Epoch Protection)

1Thread 1

Thread 2

Thread 3

Thread 4

E
Shared counter 
(current epoch)

Increasing Time
Epoch c is considered safe if all thread-local 

values are greater than c

3 4 5

1 2 4 5

1 3 4 5

1 2 3 4 5

safe epochs

1 2 3 42 3 4 5



Lazy Synchronization (Trigger Actions)

21Thread 1 3 4 5

SImplifies synchronization in a multithreaded system

Action 1 Action 2 Action 3 Action 4 Action 5



Lazy Synchronization (Trigger Actions)

21Thread 1 3 4 5

Action 1 Action 2 Action 3 Action 4 Action 5

1, Action 1 2, Action 2 3, Action 3 4, Action 4 5, Action 5

Drain List (epoch, action)



Lazy Synchronization (Example)

21Thread 1 3 4 5

Drain List (epoch, action)



Lazy Synchronization (Example)

21Thread 1 3 4 5

1, flush

Drain List (epoch, action)

flush



Lazy Synchronization (Example)

21Thread 1 3 4 5

1, flush 2, close

Drain List (epoch, action)

flush close



Lazy Synchronization (Example)

21Thread 1 3 4 5

1, flush 2, close

Drain List (epoch, action)

flush close

safe (c=1)



Lazy Synchronization (Example)

21Thread 1 3 4 5

2, close

Drain List (epoch, action)

flush close

safe (c=1)



Lazy Synchronization (Example)

21Thread 1 3 4 5

2, close

Drain List (epoch, action)

flush close

safe (c=1)

safe (c=2)



Lazy Synchronization (Example)

21Thread 1 3 4 5

Drain List (epoch, action)

flush close

safe (c=1)

safe (c=2)



Architecture 
Overview



Hash Index

Header Key Value

Header Key Value

Bucket hash 
table

Key-value records

☑ Efficient point queries

☑ Supports concurrency

☑ Scalability



Allocators (In-Memory and Append-Only)

Features: Larger-than-memory, latch-free 
access

Features: In-place updates, latch-free access

In-Memory Allocator Append-Only Log

On-Disk StorageIn-Memory 
Circular Buffer

Hash Index In-Memory Store



Allocators (HybridLog)

Read-OnlyStable Mutable

In-place updatesLarger-than-memory

Hash Index In-Memory Store

On-Disk StorageIn-Memory 
Circular Buffer

Append-Only Log In-Memory Allocator



Allocators (HybridLog)

☑ Latch-free

☑ In-place updates

☑ Handles larger-than-memory data

Read-onlyStable Mutable

In-place updatesLarger-than-memory



In-Memory vs. On Storage

T1

T2

T3

T4

Hash index

HybridLog

Read-OnlyStable Mutable

In-MemoryOn Storage



Operation Definitions

Upserts (Blind Updates) Read-Modify-Write (RMW)

new value

if key exists, 
replace with 
new value

if key does not 
exist, insert

input

if key exists, apply 
modification to 
existing value

if key does not 
exist, insert input

Example: summation-based update

input write new 
value back

new value write new 
value back



Overall FASTER Architecture

T1

T2

T3

T4 Header Key Value

Header Key Value

Read-onlyStable Mutable

HybridLog

Hash Index

Threads

Records



FASTER 's Hash 
Index



Features:

Concurrent Latch-Free ResizableScalable



FASTER Hash Index
Assumptions:
Machine: 64 bits
Cache line: 64 bytes

“FASTER Index is a cache-aligned 
array”

2k hash buckets



Assumptions:
Machine: 64 bits
Cache line: 64 bytes

8B 
entry

8B 
entry

8B 
entry

8B 
entry

8B 
entry

8B 
entry

8B 
entry

8B 
pointer

64 bytes

Hash Bucket Format

7 entries per bucket (8 bytes each)
1 overflow bucket pointer (8 bytes)

2k hash buckets

FASTER Hash Index



Tag Address

15 bits 48 bits
Tentative Bit

8 bytes

Address: Physical or logical place in memory
Tag: Increase hashing resolution
Tentative Bit: Used to keep latch-free concurrency



Tag Address

15 bits 48 bits

Tentative Bit

8 bytes

Hash value: h

First k bits = offset 
(which bucket)

Next 15 bits = tag
(entry within bucket)



Tag Address

15 bits 48 bits

Tentative Bit

8 bytes

h → (offset,tag)

2k hash buckets

Search:
1. Find offset of bucket (first k of h)
2. Scan through bucket to find tag



2k hash buckets

Tag Address

15 bits 48 bits

Tentative Bit

8 bytes

h → (offset,tag)
1. Find offset of bucket (first k of h)
2. Scan through bucket to find tag
3. Replace matching entry with zero 

(compare-and-swap)

Delete: 



Reminder: 

g1 g2 g3 g4 Next 
bucket 

address

(offset,tag) must be unique
AND
FASTER Hash Index is Concurrent 

FOR THE CLASS:

What problems do you see arising 
with inserts? 



g1 g2 g3 g4 Next 
bucket 

address

Scenario:

T1: Insert g5

T2: Delete g3 AND insert g5

T1T2



g1 g2 g3 g4 Next 
bucket 

address

Scenario:

T1: Insert g5

T2: Delete g3 AND insert g5

T1T2



g1 g2 g5 g4 g5 Next 
bucket 

address

Scenario:

T1: Insert g5

T2: Delete g3 AND insert g5

T1T2

FOR THE CLASS:

What is the problem here?



g1 g2 g5 g4 g5 Next 
bucket 

address

Scenario:

T1: Insert g5

T2: Delete g3 AND insert g5

T1T2

Same offset,tag 
inserted!



g1 g2 g5 g4 g5 Next 
bucket 

address

Scenario:

T1: Insert g5

T2: Delete g3 AND insert g5

T1T2

FOR THE CLASS:

Why do we not just lock the bucket?



Concurrent Latch-Free
Resizabl

eScalable

How do we maintain concurrency that is latch-free?



Latch-free two-phase Insert Algorithm

1. Insert record with tentative bit set

g1 g2 g5 g4 g5 Next 
bucket 

address

T1T2

1 g5 Address 1 g5 Address



Latch-free two-phase Insert Algorithm

2.  Rescan bucket for duplicate tag  

g1 g2 g5 g4 g5 Next 
bucket 

address

T1T2

1 g5 Address 1 g5 Address



Latch-free two-phase Insert Algorithm

2.  If a match is found: back off and retry 

g1 g2 g5 g4 g5 Next 
bucket 

address

T1T2

1 g5 Address 1 g5 Address

!



Latch-free two-phase Insert Algorithm

2.  Otherwise: reset tentative bit to finalize

g1 g2 g5 g4 Next 
bucket 

address

T2

0 g5 Address



In-Memory Key 
Value Store



Structure Of In-Memory Store

FASTER Hash Index

Header Key Value

In-Memory

1004

Header Key Value

1005

Entry addresses points to tail of 
reverse singly-linked list of entries 
with the same (offset,tag)



Structure Of In-Memory Store

FASTER Hash Index

Header Key Value

In-Memory

1004

Header Key Value

1005

New head New key New val

1003



Data Larger Than Memory

FASTER is designed to support frequent in-place updates AND 
large data…



Data Larger Than Memory

FASTER is designed to support frequent in-place updates AND 
large data…

How do we proceed if the data does not fit in 
memory?



The “Strawman” Solution

An append-only log using a 
circular buffer  

Manage flushing and eviction 
safety using epochs with 
triggers 



Append-Only Log

Blind Updates:
Appended to tail, 
update hash



Append-Only Log

Read
Modify+Write:
Appended to tail, 
update hash

Read + 
async I/O



Append-Only Log

FOR THE CLASS:

What drawbacks jump out with 
the append-only log, especially 
for our desired workload? 



Our Workload is Update-Intensive!

Every update requires:
● Atomic increment of tail offset
● Copying data from a previous 

location
● Atomic update of logical 

address in the hash index 

Fast growing append log becomes a 
bottleneck



HybridLog



Solution: The HybridLog

Stable Read-Only Mutable

Disk In-Memory

Head 
Offset Read-only 

Offset
Tail 
Offset

Logical 
Address = 0



The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head 
Offset

Read-only 
Offset

Tail 
Offset

Logical Address Update Action

Invalid Make new record on tail end

 

Logical 
Address = 0



The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head 
Offset

Read-only 
Offset

Tail 
Offset

Logical Address Update Action

Invalid Make new record on tail end

< Head Offset Make async IO request on disk

Logical 
Address = 0



The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head 
Offset

Read-only 
Offset

Tail 
Offset

Logical Address Update Action

Invalid Make new record on tail end

< Head Offset Make async IO request on disk

< Read-only Offset Make a mutable copy on tail end

Logical 
Address = 0



The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head 
Offset

Read-only 
Offset

Tail 
Offset

Logical Address Update Action

Invalid Make new record on tail end

< Head Offset Make async IO request on disk

< Read-only Offset Make a mutable copy on tail end

< ∞ Update-in place

Logical 
Address = 0



The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head 
Offset

Read-only 
Offset

Tail 
Offset

Logical Address Update Action

Invalid Make new record on tail end

< Head Offset Make async IO request on disk

< Read-only Offset Make a mutable copy on tail end

< ∞ Update-in place

Logical 
Address = 0

It is safe to flush read-only 
without pinning records in 
the bufferpool!



The HybridLog

Stable Mutable

In-place updatesRead-Copy-Update

Head 
Offset Read-only 

Offset
Tail 
Offset

Logical 
Address = 0

FOR THE CLASS:

How does this scheme mitigate the 
problems of the append-only log?



HybridLog Benefits

Cache for Hot 
Records 

Frequently accessed 
records remain 

in-memory and are 
updated in place

Fewer Hash 
Updates

Hot records in-memory 
do not require I/Os to 

disk

Minimizes Disk 
I/O  

The hottest records in 
mutable will not need to 
update the hash index
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The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head 
Offset

Read-only 
Offset

Tail 
Offset

Logical 
Address = 0

FOR THE CLASS:

What other aspect of the target 
workload does this problem solve?



The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head 
Offset

Read-only 
Offset

Tail 
Offset

Logical 
Address = 0

FOR THE CLASS:

What other aspect of the target 
workload does this problem solve?

Adaptable to changing 
hot/cold sets!



The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head 
Offset

Read-only 
Offset

Tail 
Offset

Logical Address Update Action

Invalid Make new record on tail end

< Head Offset Make async IO request on disk

< Read-only Offset Make a mutable copy on tail end

< ∞ Update-in place

Logical 
Address = 0

What about 
range-queries?



The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head 
Offset

Read-only 
Offset

Tail 
Offset

Logical 
Address = 0

FOR THE CLASS:

What problems can this cause with 
multiple threads?

The read-only offset shifts 
with the tail offset… 



Lost-Update Anomaly

Head 
Offset

R1 Head 
Offset

Head 
Offset

R1 Head 
Offset

T1

T2

L

L

Both threads obtain address L | T1 determines L > R1



Lost-Update Anomaly

Head 
Offset

R1 Head 
Offset

Head 
Offset

R2 Head 
Offset

T1

T2

L

L

A new thread updates R1 ->R2 | T2 determines L < R2



Lost-Update Anomaly

Head 
Offset

R1 Head 
Offset

Head 
Offset

R2 Head 
Offset

T1

T2

L: 4 → 5 

L

T1 updates in place | T2 read-copy-writes

L’: 5 



Safe Read-Only: Using Epoch 
Protections

Head 
Offset

Head 
Offset

Head 
Offset

Head 
Offset

T1

T2

Safe read-only 
offset



The Fuzzy Region

Head 
Offset

Head 
Offset

Head 
Offset

Head 
Offset

T1

T2

The space between the safe read-only offset 
and a threads read-only offset



Evaluation and 
Results



Proof of Hybrid vs Append-Only



Setup

Dell PowerEdge R730 machines, 2.60GHz Intel Xeon CPU 5E-2690 v4 CPUs
● 2 sockets, 14 cores per socket, 2 hyperthreads per core (56 total)
● 256GB RAM, 3.2TB FusionIO NVMe SSD

Extended YCSB-A workload from Yahoo Cloud Serving Benchmark: 
● 250 million distinct 8-byte keys, value sizes of 8 and 100 bytes
● R:BU and add RMW at 100%

In-memory: Masstree, Intel TBB concurrent hashmap
Larger than memory:  RocksDB 

Setup

Workloads

Benchmarks



In-Memory: Single & Multi-Thread

Workload: 8-byte YCSB payload



In-Memory: Scalability

Workload: 8-byte payload, 100% RMW Workload: 100-byte payload, 0:100 blind upsert



In-Memory: Scalability

Workload: 8-byte payload, 100% RMW Workload: 100-byte payload, 0:100 blind upsert



In-Memory: Scalability

Workload: 8-byte payload, 100% RMW Workload: 100-byte payload, 0:100 blind upsert



In-Memory: Scalability

Workload: 8-byte payload, 100% RMW Workload: 100-byte payload, 0:100 blind upsert



Larger-Than Memory
All blind 
updates

50:50 
R/BU



Larger-Than Memory

Why does the 
50:50 R:BU stall 
at lower memory 
budgets?

All blind 
updates

50:50 
R/BU



Conclusion



FASTER Supports:

Latch-Free 
Concurrency

Update-Intensive 
Workloads + 
Changing Hot Sets

Larger-Than-Memory

In-Place Updates



Future Work and Next Steps

Mitigate steep dropoff
Improve efficiency of 

random access

Extend to scan-based log 
analytic systems

Making more versatile

Currently: eliminates 
need for WAL

Enhance monotonicity for 
consistent results

Optimize I/O Path Apply to Other 
Systems

Optimize Recovery 
After Failure



Our Thoughts

● I think FASTER does very well for what it 
is designed to do and is optimized for. I 
would like to see the future work on how 
to optimize the I/O path and for how to 
better handle reads. 

● FASTER seems to be great for 
write-intensive/update-intensive data, and 
I am interested by its capabilities for 
handling data with a lot of edge device 
traffic.

● However, because it is optimized for 
update-intensive workloads, I do think 
there is room for improvement for 
handling more diverse workloads (like 
more reads)..

Alex Abbie



Thank you!


