
FASTER: A Concurrent
Key-Value Store with In-Place
Updates
Authors: Badrish Chandramouli, Guna Prasaad, Donald Kossmann,
Justin Levandoski, James Hunter, Mike Barnett
University of Washington, Microsoft Research
Houston, TX 2018

Presented By: Alex Stevenson, Abbie Murphy

Outline

Introduction Solution

Evaluation + Results Conclusion

01 02

03 04

Introduction
● Handling large data in modern applications
● Addressing concurrency
● Current systems and key-value stores
● What is FASTER solving?

01

Data-Intensive Modern Applications

● Large data sets
● Processed remotely by cloud

applications

● Update-intensive data
● Larger-than-memory

Large amounts of data
created on edge devices

Monitoring and processing
data in real time

Current Challenges

Advertising platform storing
per-user statistics for billions

of users

Monitoring systems updating
per-device CPU metrics

Efficiently retrieve
user-specific data without a

range scan

Offline analytics: calculating
average clickthrough rate

Search engine actively
processing data for fraction

of billion of users

Multiple threads sharing data
without slowing down

performance

How can we manage
large amounts of data

at scale?

How can we handle
high update rates

efficiently?

How can we better
serve data when

queries are highly
localized ?

How can we optimize
for fast point
operations ?

How can we make
data updates readily
usable for analytics?

How can we support
concurrency without

hurting
performance?

Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably.

FOR THE CLASS:

What would you do to facilitate
concurrency?

Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably.

FOR THE CLASS:

What would you do to facilitate
concurrency?

For thread safe access:
Latches – exclusive access to protected data

structures for threads

Key Concepts

● Latch systems use latches for thread-safe
access

Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably.

FOR THE CLASS:

What is one issue when trying to achieve
synchronization using latch systems?

Key Concepts

● Latch systems use latches for thread-safe
access

Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably.

FOR THE CLASS:

What is one issue when trying to achieve
synchronization using latch systems?

Can increase waiting times!

Key Concepts

● Latch systems use latches for thread-safe
access

○ Issue: has delays + contention

Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably.

FOR THE CLASS:

What would you do if you wanted to
avoid latches?

Key Concepts

● Latch systems use latches for thread-safe
access

○ Issue: has delays + contention

Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably.

FOR THE CLASS:

What would you do if you wanted to
avoid latches?

Latch-free system examples:
Atomic operations or epoch-protection

Key Concepts

● Latch systems use latches for thread-safe
access

○ Issue: has delays + contention
● Latch-free systems avoids latches by

using atomic operations or
epoch-protection

Concurrency in Applications
Systems must be capable of managing simultaneous access to states efficiently and reliably.

Key Concepts
● Latch systems use latches

for thread-safe access
○ Issue: has delays +

contention
● Latch-free systems avoids

latches by using atomic
operations or
epoch-protection

Scalability

scaling efficiently
across threads and

hardware

Contention

no more multiple
threads competing
for same resource

Synchronization

reducing waiting times
and independent
thread operation

Challenges latch-free
systems address

01 02 03

Current
Systems

Pure In-Memory
Data Structure

Example: Intel TBB Hash Map
+ Optimized for concurrency
+ Supports in-place updates
– Less efficient for managing

larger-than-memory data

Example: Intel TBB Hash Map
+ Optimized for concurrency
+ Supports in-place updates
– Less efficient for managing

larger-than-memory data

Current
Systems

Pure In-Memory
Data Structure

FOR THE CLASS:

Why is this solution expensive?

Example: Intel TBB Hash Map
+ Optimized for concurrency
+ Supports in-place updates
– Less efficient for managing

larger-than-memory data

Current
Systems

Pure In-Memory
Data Structure

FOR THE CLASS:

Why is this solution expensive?

Under-utilization of machine resources
Need a structure that efficiently balance memory

and storage use + balance larger than memory

What FASTER aims to solve

Concurrency In-place updates Larger than
memory data

What is FASTER ?
Concurrent latch-free key-value store with in-place updates

T1

T2

T3

T4

Hash index HybridLog

Header | Key | Value

…

Solution
● Epoch-Protection Framework
● FASTER Architecture Overview
● FASTER's Hash Index
● In-Memory Key Value Stores
● HybridLog

02

Epoch-Protection
Framework
Ensuring Efficient, Scalable Synchronization
Across Threads

What is Epoch Protection?

Trigger Actions
Shared atomic counter (E)
Thread has local epoch

Lazy synchronization
(refreshed periodically)

Tracks maximal safe epoch
Updated when threads refresh

Drain-list holds <epoch, action> pairs
Actions triggered when epoch is safe

Executed using atomic operation

Epoch Mechanism Global Counter

Why is this framework important?

Latch-Free and
Scalability

Alleviates thread
coordination cost

Independent thread operations
Maintains global consistency

Avoids latches
Improves scalability using

scalable thread model

Lazy
Synchronization

Efficient
Concurrency

Lazy Synchronization (Epoch-Protection)

Thread 1

Thread 2

Thread 3

Thread 4

E
Shared counter
(current epoch) 2 3 4 5 Increasing Time

2

Lazy Synchronization (Epoch Protection)

1Thread 1

Thread 2

Thread 3

Thread 4

E
Shared counter
(current epoch) 2 3 4 5 Increasing Time

Each thread keeps stale local epoch
counter copied from E

3 4 5

1 2 4 5

1 3 4 5

1 2 3 4 5

2

Lazy Synchronization (Epoch Protection)

1Thread 1

Thread 2

Thread 3

Thread 4

E
Shared counter
(current epoch)

Increasing Time
Epoch c is considered safe if all thread-local

values are greater than c

3 4 5

1 2 4 5

1 3 4 5

1 2 3 4 5

safe epochs

1 2 3 4

2

Lazy Synchronization (Epoch Protection)

1Thread 1

Thread 2

Thread 3

Thread 4

E
Shared counter
(current epoch)

Increasing Time
Epoch c is considered safe if all thread-local

values are greater than c

3 4 5

1 2 4 5

1 3 4 5

1 2 3 4 5

safe epochs

1 2 3 42 3 4 5

Lazy Synchronization (Trigger Actions)

21Thread 1 3 4 5

SImplifies synchronization in a multithreaded system

Action 1 Action 2 Action 3 Action 4 Action 5

Lazy Synchronization (Trigger Actions)

21Thread 1 3 4 5

Action 1 Action 2 Action 3 Action 4 Action 5

1, Action 1 2, Action 2 3, Action 3 4, Action 4 5, Action 5

Drain List (epoch, action)

Lazy Synchronization (Example)

21Thread 1 3 4 5

Drain List (epoch, action)

Lazy Synchronization (Example)

21Thread 1 3 4 5

1, flush

Drain List (epoch, action)

flush

Lazy Synchronization (Example)

21Thread 1 3 4 5

1, flush 2, close

Drain List (epoch, action)

flush close

Lazy Synchronization (Example)

21Thread 1 3 4 5

1, flush 2, close

Drain List (epoch, action)

flush close

safe (c=1)

Lazy Synchronization (Example)

21Thread 1 3 4 5

2, close

Drain List (epoch, action)

flush close

safe (c=1)

Lazy Synchronization (Example)

21Thread 1 3 4 5

2, close

Drain List (epoch, action)

flush close

safe (c=1)

safe (c=2)

Lazy Synchronization (Example)

21Thread 1 3 4 5

Drain List (epoch, action)

flush close

safe (c=1)

safe (c=2)

Architecture
Overview

Hash Index

Header Key Value

Header Key Value

Bucket hash
table

Key-value records

☑ Efficient point queries

☑ Supports concurrency

☑ Scalability

Allocators (In-Memory and Append-Only)

Features: Larger-than-memory, latch-free
access

Features: In-place updates, latch-free access

In-Memory Allocator Append-Only Log

On-Disk StorageIn-Memory
Circular Buffer

Hash Index In-Memory Store

Allocators (HybridLog)

Read-OnlyStable Mutable

In-place updatesLarger-than-memory

Hash Index In-Memory Store

On-Disk StorageIn-Memory
Circular Buffer

Append-Only Log In-Memory Allocator

Allocators (HybridLog)

☑ Latch-free

☑ In-place updates

☑ Handles larger-than-memory data

Read-onlyStable Mutable

In-place updatesLarger-than-memory

In-Memory vs. On Storage

T1

T2

T3

T4

Hash index

HybridLog

Read-OnlyStable Mutable

In-MemoryOn Storage

Operation Definitions

Upserts (Blind Updates) Read-Modify-Write (RMW)

new value

if key exists,
replace with
new value

if key does not
exist, insert

input

if key exists, apply
modification to
existing value

if key does not
exist, insert input

Example: summation-based update

input write new
value back

new value write new
value back

Overall FASTER Architecture

T1

T2

T3

T4 Header Key Value

Header Key Value

Read-onlyStable Mutable

HybridLog

Hash Index

Threads

Records

FASTER 's Hash
Index

Features:

Concurrent Latch-Free ResizableScalable

FASTER Hash Index
Assumptions:
Machine: 64 bits
Cache line: 64 bytes

“FASTER Index is a cache-aligned
array”

2k hash buckets

Assumptions:
Machine: 64 bits
Cache line: 64 bytes

8B
entry

8B
entry

8B
entry

8B
entry

8B
entry

8B
entry

8B
entry

8B
pointer

64 bytes

Hash Bucket Format

7 entries per bucket (8 bytes each)
1 overflow bucket pointer (8 bytes)

2k hash buckets

FASTER Hash Index

Tag Address

15 bits 48 bits
Tentative Bit

8 bytes

Address: Physical or logical place in memory
Tag: Increase hashing resolution
Tentative Bit: Used to keep latch-free concurrency

Tag Address

15 bits 48 bits

Tentative Bit

8 bytes

Hash value: h

First k bits = offset
(which bucket)

Next 15 bits = tag
(entry within bucket)

Tag Address

15 bits 48 bits

Tentative Bit

8 bytes

h → (offset,tag)

2k hash buckets

Search:
1. Find offset of bucket (first k of h)
2. Scan through bucket to find tag

2k hash buckets

Tag Address

15 bits 48 bits

Tentative Bit

8 bytes

h → (offset,tag)
1. Find offset of bucket (first k of h)
2. Scan through bucket to find tag
3. Replace matching entry with zero

(compare-and-swap)

Delete:

Reminder:

g1 g2 g3 g4 Next
bucket

address

(offset,tag) must be unique
AND
FASTER Hash Index is Concurrent

FOR THE CLASS:

What problems do you see arising
with inserts?

g1 g2 g3 g4 Next
bucket

address

Scenario:

T1: Insert g5

T2: Delete g3 AND insert g5

T1T2

g1 g2 g3 g4 Next
bucket

address

Scenario:

T1: Insert g5

T2: Delete g3 AND insert g5

T1T2

g1 g2 g5 g4 g5 Next
bucket

address

Scenario:

T1: Insert g5

T2: Delete g3 AND insert g5

T1T2

FOR THE CLASS:

What is the problem here?

g1 g2 g5 g4 g5 Next
bucket

address

Scenario:

T1: Insert g5

T2: Delete g3 AND insert g5

T1T2

Same offset,tag
inserted!

g1 g2 g5 g4 g5 Next
bucket

address

Scenario:

T1: Insert g5

T2: Delete g3 AND insert g5

T1T2

FOR THE CLASS:

Why do we not just lock the bucket?

Concurrent Latch-Free
Resizabl

eScalable

How do we maintain concurrency that is latch-free?

Latch-free two-phase Insert Algorithm

1. Insert record with tentative bit set

g1 g2 g5 g4 g5 Next
bucket

address

T1T2

1 g5 Address 1 g5 Address

Latch-free two-phase Insert Algorithm

2. Rescan bucket for duplicate tag

g1 g2 g5 g4 g5 Next
bucket

address

T1T2

1 g5 Address 1 g5 Address

Latch-free two-phase Insert Algorithm

2. If a match is found: back off and retry

g1 g2 g5 g4 g5 Next
bucket

address

T1T2

1 g5 Address 1 g5 Address

!

Latch-free two-phase Insert Algorithm

2. Otherwise: reset tentative bit to finalize

g1 g2 g5 g4 Next
bucket

address

T2

0 g5 Address

In-Memory Key
Value Store

Structure Of In-Memory Store

FASTER Hash Index

Header Key Value

In-Memory

1004

Header Key Value

1005

Entry addresses points to tail of
reverse singly-linked list of entries
with the same (offset,tag)

Structure Of In-Memory Store

FASTER Hash Index

Header Key Value

In-Memory

1004

Header Key Value

1005

New head New key New val

1003

Data Larger Than Memory

FASTER is designed to support frequent in-place updates AND
large data…

Data Larger Than Memory

FASTER is designed to support frequent in-place updates AND
large data…

How do we proceed if the data does not fit in
memory?

The “Strawman” Solution

An append-only log using a
circular buffer

Manage flushing and eviction
safety using epochs with
triggers

Append-Only Log

Blind Updates:
Appended to tail,
update hash

Append-Only Log

Read
Modify+Write:
Appended to tail,
update hash

Read +
async I/O

Append-Only Log

FOR THE CLASS:

What drawbacks jump out with
the append-only log, especially
for our desired workload?

Our Workload is Update-Intensive!

Every update requires:
● Atomic increment of tail offset
● Copying data from a previous

location
● Atomic update of logical

address in the hash index

Fast growing append log becomes a
bottleneck

HybridLog

Solution: The HybridLog

Stable Read-Only Mutable

Disk In-Memory

Head
Offset Read-only

Offset
Tail
Offset

Logical
Address = 0

The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head
Offset

Read-only
Offset

Tail
Offset

Logical Address Update Action

Invalid Make new record on tail end

Logical
Address = 0

The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head
Offset

Read-only
Offset

Tail
Offset

Logical Address Update Action

Invalid Make new record on tail end

< Head Offset Make async IO request on disk

Logical
Address = 0

The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head
Offset

Read-only
Offset

Tail
Offset

Logical Address Update Action

Invalid Make new record on tail end

< Head Offset Make async IO request on disk

< Read-only Offset Make a mutable copy on tail end

Logical
Address = 0

The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head
Offset

Read-only
Offset

Tail
Offset

Logical Address Update Action

Invalid Make new record on tail end

< Head Offset Make async IO request on disk

< Read-only Offset Make a mutable copy on tail end

< ∞ Update-in place

Logical
Address = 0

The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head
Offset

Read-only
Offset

Tail
Offset

Logical Address Update Action

Invalid Make new record on tail end

< Head Offset Make async IO request on disk

< Read-only Offset Make a mutable copy on tail end

< ∞ Update-in place

Logical
Address = 0

It is safe to flush read-only
without pinning records in
the bufferpool!

The HybridLog

Stable Mutable

In-place updatesRead-Copy-Update

Head
Offset Read-only

Offset
Tail
Offset

Logical
Address = 0

FOR THE CLASS:

How does this scheme mitigate the
problems of the append-only log?

HybridLog Benefits

Cache for Hot
Records

Frequently accessed
records remain

in-memory and are
updated in place

Fewer Hash
Updates

Hot records in-memory
do not require I/Os to

disk

Minimizes Disk
I/O

The hottest records in
mutable will not need to
update the hash index

01 02 03

The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head
Offset

Read-only
Offset

Tail
Offset

Logical
Address = 0

FOR THE CLASS:

What other aspect of the target
workload does this problem solve?

The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head
Offset

Read-only
Offset

Tail
Offset

Logical
Address = 0

FOR THE CLASS:

What other aspect of the target
workload does this problem solve?

Adaptable to changing
hot/cold sets!

The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head
Offset

Read-only
Offset

Tail
Offset

Logical Address Update Action

Invalid Make new record on tail end

< Head Offset Make async IO request on disk

< Read-only Offset Make a mutable copy on tail end

< ∞ Update-in place

Logical
Address = 0

What about
range-queries?

The HybridLog

Stable Read-Only Mutable

In-place updatesRead-Copy-Update

Head
Offset

Read-only
Offset

Tail
Offset

Logical
Address = 0

FOR THE CLASS:

What problems can this cause with
multiple threads?

The read-only offset shifts
with the tail offset…

Lost-Update Anomaly

Head
Offset

R1 Head
Offset

Head
Offset

R1 Head
Offset

T1

T2

L

L

Both threads obtain address L | T1 determines L > R1

Lost-Update Anomaly

Head
Offset

R1 Head
Offset

Head
Offset

R2 Head
Offset

T1

T2

L

L

A new thread updates R1 ->R2 | T2 determines L < R2

Lost-Update Anomaly

Head
Offset

R1 Head
Offset

Head
Offset

R2 Head
Offset

T1

T2

L: 4 → 5

L

T1 updates in place | T2 read-copy-writes

L’: 5

Safe Read-Only: Using Epoch
Protections

Head
Offset

Head
Offset

Head
Offset

Head
Offset

T1

T2

Safe read-only
offset

The Fuzzy Region

Head
Offset

Head
Offset

Head
Offset

Head
Offset

T1

T2

The space between the safe read-only offset
and a threads read-only offset

Evaluation and
Results

Proof of Hybrid vs Append-Only

Setup

Dell PowerEdge R730 machines, 2.60GHz Intel Xeon CPU 5E-2690 v4 CPUs
● 2 sockets, 14 cores per socket, 2 hyperthreads per core (56 total)
● 256GB RAM, 3.2TB FusionIO NVMe SSD

Extended YCSB-A workload from Yahoo Cloud Serving Benchmark:
● 250 million distinct 8-byte keys, value sizes of 8 and 100 bytes
● R:BU and add RMW at 100%

In-memory: Masstree, Intel TBB concurrent hashmap
Larger than memory: RocksDB

Setup

Workloads

Benchmarks

In-Memory: Single & Multi-Thread

Workload: 8-byte YCSB payload

In-Memory: Scalability

Workload: 8-byte payload, 100% RMW Workload: 100-byte payload, 0:100 blind upsert

In-Memory: Scalability

Workload: 8-byte payload, 100% RMW Workload: 100-byte payload, 0:100 blind upsert

In-Memory: Scalability

Workload: 8-byte payload, 100% RMW Workload: 100-byte payload, 0:100 blind upsert

In-Memory: Scalability

Workload: 8-byte payload, 100% RMW Workload: 100-byte payload, 0:100 blind upsert

Larger-Than Memory
All blind
updates

50:50
R/BU

Larger-Than Memory

Why does the
50:50 R:BU stall
at lower memory
budgets?

All blind
updates

50:50
R/BU

Conclusion

FASTER Supports:

Latch-Free
Concurrency

Update-Intensive
Workloads +
Changing Hot Sets

Larger-Than-Memory

In-Place Updates

Future Work and Next Steps

Mitigate steep dropoff
Improve efficiency of

random access

Extend to scan-based log
analytic systems

Making more versatile

Currently: eliminates
need for WAL

Enhance monotonicity for
consistent results

Optimize I/O Path Apply to Other
Systems

Optimize Recovery
After Failure

Our Thoughts

● I think FASTER does very well for what it
is designed to do and is optimized for. I
would like to see the future work on how
to optimize the I/O path and for how to
better handle reads.

● FASTER seems to be great for
write-intensive/update-intensive data, and
I am interested by its capabilities for
handling data with a lot of edge device
traffic.

● However, because it is optimized for
update-intensive workloads, I do think
there is room for improvement for
handling more diverse workloads (like
more reads)..

Alex Abbie

Thank you!

