
The Data Calculator
Authors: Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester, Demi

Guo

Presented by: Minjie Tang, Alec Gallardo, Ge Gao

Once Upon A Time…

I have this workload with
80% read and 20%
write.
How can we design a
database for it?

What would be the best data structure to store this data?

We need more information!

I have this workload
with 80% read and
20% write…

We need more information!

How large is the dataset? Is data sorted or unsorted?

What type of queries will be performed?

Will workload grow in the future?

Will there be delete?

What are the hardware
constraints?

I have this workload
with 80% read and
20% write…

We need more information!

How large is the dataset? Is data sorted or unsorted?

What type of queries will be performed?

Will workload grow in the future?

Will there be delete?

What are the hardware
constraints?

Data layout

Workload information

Hardware Profile

How can we take advantage of the hardware?

What if we add a Bloom filter? What if the workload shifts? What if…

Can we build upon a simple data structure?

Or build a new one from scratch?

Design Questions

Can we tune it based on our needs

How can we take advantage of the hardware?

What if we add a Bloom filter?What if the workload shifts?What if…

Can we build upon a simple data structure?

Or build a new one from scratch?

Design Questions

Can we tune it based on our needs

We wouldn’t be able to implement them all!

We know these

Now we want to answer these

The Data Calculator

The Data Calculator

Primitives

Elements PerformanceData calculatorFull data structures

Using Data Calculator

The Data Calculator

Layout design

Workload

Hardware

Performance
WHAT IF?

Based on predicted performance, we can explore endless possibilities
—without implementing them!

Using Data Calculator

The Data Calculator

Access Primitives
&

Cost SynthesisLayout Primitives

Usage
&

Experiment

The Data Calculator

Primitives

Elements PerformanceData calculatorFull data structures

Primitives

Existing
Data Structures

Primitives

The Data Calculator

Usage
&

Experiment

Access Primitives
&

Cost SynthesisLayout Primitives

● defines aspects of a data
structure's layout

node organization

partitioning

physical placement

metadata

Data Layout Primitives

Key order: Sorted

Data Layout Primitives - B+ Tree

Key retention: None (Inner nodes),

Yes(Leaf nodes)

Sub-block physical layout: BFS

5

2 4 7 8

1 2 3

6

4

Key order: Sorted

Data Layout Primitives - B+ Tree

Key retention: None (Inner nodes),

Yes(Leaf nodes)

Sub-block physical layout: BFS

5

2 4 7 8

1 2 3

6

4

Memory layout: 1 2 3

Key order: Sorted

Data Layout Primitives - B+ Tree

Key retention: None (Inner nodes),

Yes(Leaf nodes)

Sub-block physical layout: BFS

5

2 4 7 8

1 2 3

6

4

Memory layout: 1 2 3

B+ Tree Elements

Key retention type

Sub-block physical la
yout

B+ Tree Elements

Key retention type

Sub-block physical la
yout

Elements

Elements

Element: defining how data is stored
and accessed in that node.

Terminal & Non-Elements B+Tree

Terminal & Non-Elements B+Tree

Terminal & Non-Elements B+Tree

Terminal & Non-Elements B+Tree

Terminal & Non-Elements

Terminal element: contain the actual data
(e.g., leaves in a B+Tree).

Non-terminal element: act as internal nodes
that point to other elements (e.g., internal nodes in a tree).

Domain of primitives

Size of Design space

https://stratos.seas.harvard.edu/files/stratos/files/periodictabledatastructures.pdf

The Data Calculator

Layout Primitives

Usage
&

Experiment

Access Primitives
&

Cost Synthesis

Data Access Primitives

Access Primitives
&

Cost Synthesis

What are access primitives?

Definition: Each access primitive characterizes
one aspect of how data is accessed.

Examples of Data Access Primitives

Scan Hash ProbeSorted Search Bloom Filter Probe

Examples of Data Access Primitives

Bloom Filter Probe

Examples of Data Access Primitives

Bloom Filter Probe

Advantages:
● Reduced I/O’s
● Fast
● Space Efficient

Disadvantages:
● False Positives

Advantages of Different Data Access Primitives

Scan Hash Probe

● Good for
non-selective
queries

● No Index
Required

● Good for point
queries

● Efficient
Memory Usage

Examples of Data Access Primitives

Different Access Primitives
Have Different Advantages

Levels of Data Access Primitives

AP Random Access
Memory

Scan

Bloom Filter
Probe

Sorted Search

Sequential Memory
Access

Hash Probe

AP

AP

AP

AP

AP

Level 1
(Conceptual access patterns)

AP Random Access
Memory

Scan

Bloom Filter
Probe

Sorted Search

Sequential Memory
Access

Hash Probe

AP

AP

AP

AP

AP

Level 1
(Conceptual access patterns)

Sorted SearchAP

AP

AP

Binary Search

Interpolation
Search

Level 2
(Specific Implementations)

Levels of Data Access Primitives

AP Random Access
Memory

Scan

Bloom Filter
Probe

Sorted Search

Sequential Memory
Access

Hash Probe

AP

AP

AP

AP

AP

Level 1
(Conceptual access patterns)

Sorted SearchAP

AP

AP

Binary Search

Interpolation
Search

Level 2
(Specific Implementations)

AP
New Sorted
Search

Levels of Data Access Primitives

Learned Cost Models

Learned Cost Model Examples

Learned Cost Models (examples)

Learned Cost Models (examples)
Scan

Learned Cost Model Examples

Cost Synthesis

Cost Synthesis

Cost Synthesis

Cost Synthesis

Cost Synthesis

Cost Synthesis (Bulk Loading Example)

Cost Synthesis

Cost Synthesis

Operation Synthesis to Cost Synthesis

Operation Synthesis to Cost Synthesis

The Data Calculator

Layout Primitives

Access Primitives
&

Cost Synthesis

Usage
&

Experiment

What Can We Do With Data Calculator?

There are too many WHAT-IF questions for
designing database!

WHAT IF I want to bring bloom filter to my B-Tree?

WHAT IF I am given a different workload?

WHAT IF I have to use a different hardware?

WHAT IF I need to adjust for a different cache?

Without Data Calculator

DAYS OR EVEN
WEEKS OF

ACTUAL
IMPLEMENTATION

HOURS OR EVEN
MINUTES

OF COST
SYNTHESIS

With Data Calculator

 Workflow
Complete Design

Adjusting

Benchmarking

Benchmarking Again

Compare & Decide

EVERY STEP WITHIN A MINUTE!

But What If I Don’t Even Have a Complete Design?

Data Calculator can
auto-complete for you!

How?

Dynamic Programming!

Q → workload
ε → design space
l → current hierarchy
currentPath → specification to be done
H → hardware profile

Terminate when
1. Size exceeds capacity
2. Further Design not meaningful
3. Design already in cache

Initialize the solution assuming no limit on cost

For each candidate element:
1. Initialize solution and calculate its cost with element E
2. Update current solution with the cost

If there exists element under E:
Recursively update cost with subelement
as a new level of hierarchy

Update current best solution if the new solution
costs less

Store the current best solution in the cache
and return it

Experiment: Accuracy of Cost Synthesis

System implementation: C++

Benchmark analysis & Learning: Python

Idea: Compare cost with actual implementation and cost synthesis

Operation type: Point Get, Range Get, Update, Bulk Load

HW1
CPU: 64 x 2.3 GHz

L3: 46MB
RAM: 256GB

HW2
CPU: 4 x 2.3 GHz

L3: 46MB
RAM: 16GB

HW3
CPU: 64 x 2 GHz

L3: 16MB
RAM: 1TB

Experiment: Accuracy of Cost Synthesis

Number of entries (log scale)

Cost Synthesis is sufficiently accurate!

Data Calculator Implementation

Experiment: Accuracy of Cost Synthesis

Cost synthesis is accurate for all experimented data structures!

 any interesting pattern?

Experiment: Accuracy of Cost Synthesis

 Why the result for trie is
the least accurate?

For bulk loading, cost
synthesis is accurate

Cache-sensitive Design

How “far” each node is placed to each other

Crucial for calculating the cost of traversing data structure

Represented as layout primitive

Cache-Sensitive B+ Tree vs. B+ Tree

Experiment: Accuracy of Cost Synthesis

It is accurate for CSB+ tree as well!

Experiment: Accuracy of Cost Synthesis

Accuracy of cost synthesis
increases as skewness of
workload increases.

 Why is that?

Why does it improve more for
B+ Tree?

Experiment: Speed of Cost Synthesis

Training by seconds
vs.

Implementing by days

Experiment: Speed of Cost Synthesis
"What if we change our hardware from HW1 to HW3?"

20s

"Is there a better design for this new hardware and workload if we restrict search
on a specific set of possible elements?"

47s

"Would it be beneficial to add a Bloom filter in all B-tree leaves?"

"What if the query workload changes to have skew targeting just
0.01% of the key space?"

20s

24s

Give Me a Better Design → in 30 Minutes!

Scenario 1: mixed read&write, all read are point queries in 20% of the domain

Scenario 2: mixed read&write, half of read are point queries in 10% of the domain, the other half are
range queries in another 10% of the domain

Potential for improvement

Introduction of more design elements

Support for cost synthesis of advanced operations
(such as point/range delete)

Optimization for cost synthesis

 Others?

Recap:

Design Primitives:

Fundamental building blocks for describing data structures.

Enables the exploration of a massive design space.

Learned Cost Models:

Predict operation latencies without implementation or workload execution.

Adaptable to hardware and workload profiles.

What-If Analysis:

Answer complex questions about design, hardware, and workload trade-offs interactively.

Auto-Completion:

Semi-automated synthesis of new data structures and auto-completion of partial designs.

Reflections
Ge:
The paper provides a transformative approach to data structure design by introducing a framework that combines
fundamental design primitives and learned cost models to explore, synthesize, and evaluate a vast design space. The tool’s
ability to predict costs without implementation or workload execution is particularly impressive.

Alec:

I enjoyed working on this paper, it provided a good framework for evaluating cost of more complex structures by breaking things
down into the costs of their constituent parts, and accounts for differences in hardware (without the ambiguity of big O notation for
actual numbers). It also provides algorithms for optimization rather than just being a tool to view results of a hypothetical data
structure which is pretty neat.

Minjie:

Even though nowadays when we design database we need to consider more factors like cloud storage, distributed environments
and so on. This paper set up a nice starting point for how we can extend these ideas, combining them with new paradigms.

