
The Data Calculator
Authors: Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester, Demi 

Guo

Presented by: Minjie Tang, Alec Gallardo, Ge Gao



Once Upon A Time…

I have this workload with 
80% read and 20% 
write. 
How can we design a 
database for it?

What would be the best data structure to store this data? 

We need more information! 



I have this workload 
with 80% read and 
20% write…

We need more information! 

How large is the dataset? Is data sorted or unsorted?

What type of queries will be performed?

Will workload grow in the future?

Will there be delete?

What are the hardware 
constraints?



I have this workload 
with 80% read and 
20% write…

We need more information! 

How large is the dataset? Is data sorted or unsorted?

What type of queries will be performed?

Will workload grow in the future?

Will there be delete?

What are the hardware 
constraints?

Data layout

Workload information

Hardware Profile



How can we take advantage of the hardware?

What if we add a Bloom filter? What if the workload shifts? What if…

Can we build upon a simple data structure? 

Or build a new one from scratch? 

Design Questions

Can we tune it based on our needs



How can we take advantage of the hardware?

What if we add a Bloom filter?What if the workload shifts?What if…

Can we build upon a simple data structure? 

Or build a new one from scratch? 

Design Questions

Can we tune it based on our needs

We wouldn’t be able to implement them all!



We know these 



Now we want to answer these
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Using Data Calculator



The Data Calculator

Layout design

Workload

Hardware

Performance
WHAT IF?

Based on predicted performance, we can explore endless possibilities
—without implementing them!
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Primitives
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● defines aspects of a data 
structure's layout

node organization

partitioning

physical placement

metadata

Data Layout Primitives
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Elements 



Elements 
 

 

Element: defining how data is stored 
and accessed in that node.



Terminal & Non-Elements B+Tree
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Terminal & Non-Elements

Terminal element: contain the actual data
(e.g., leaves in a B+Tree).

Non-terminal element: act as internal nodes 
that point to other elements (e.g., internal nodes in a tree).



Domain of primitives

Size of Design space

https://stratos.seas.harvard.edu/files/stratos/files/periodictabledatastructures.pdf
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Data Access Primitives

Access Primitives 
&

Cost Synthesis

What are access primitives?

Definition: Each access primitive characterizes 
one aspect of how data is accessed. 



Examples of Data Access Primitives

Scan Hash ProbeSorted Search Bloom Filter Probe
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Bloom Filter Probe



Examples of Data Access Primitives

Bloom Filter Probe

Advantages:
● Reduced I/O’s
● Fast
● Space Efficient

Disadvantages:
● False Positives



Advantages of Different Data Access Primitives

Scan Hash Probe

● Good for 
non-selective 
queries

● No Index 
Required

● Good for point 
queries

● Efficient 
Memory Usage



Examples of Data Access Primitives

Different Access Primitives
Have Different Advantages



Levels of Data Access Primitives
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Learned Cost Model Examples
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Cost Synthesis (Bulk Loading Example)
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Operation Synthesis to Cost Synthesis



Operation Synthesis to Cost Synthesis
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What Can We Do With Data Calculator?

There are too many WHAT-IF questions for 
designing database!



WHAT IF I want to bring bloom filter to my B-Tree?

WHAT IF I am given a different workload?

WHAT IF I have to use a different hardware?

WHAT IF I need to adjust for a different cache?



Without Data Calculator

DAYS OR EVEN 
WEEKS OF 

ACTUAL 
IMPLEMENTATION

HOURS OR EVEN 
MINUTES 

OF COST 
SYNTHESIS

With Data Calculator



      Workflow
Complete Design

Adjusting

Benchmarking

Benchmarking Again

Compare & Decide

EVERY STEP WITHIN A MINUTE!



But What If I Don’t Even Have a Complete Design?

Data Calculator can 
auto-complete for you!

How?

Dynamic Programming!



Q → workload  
ε  → design space  
l   → current hierarchy
currentPath → specification to be done  
H → hardware profile



Terminate when 
1. Size exceeds capacity
2. Further Design not meaningful  
3. Design already in cache



Initialize the solution assuming no limit on cost



For each candidate element:
1. Initialize solution and calculate its cost with element E
2. Update current solution with the cost



If there exists element under E:
Recursively update cost with subelement 
as a new level of hierarchy 



Update current best solution if the new solution 
costs less



Store the current best solution in the cache 
and return it



Experiment: Accuracy of Cost Synthesis

System implementation: C++ 

Benchmark analysis & Learning: Python

Idea: Compare cost with actual implementation and cost synthesis

Operation type: Point Get, Range Get, Update, Bulk Load

HW1
CPU: 64 x 2.3 GHz 

L3: 46MB 
RAM: 256GB

HW2
CPU: 4 x 2.3 GHz 

L3: 46MB 
RAM: 16GB

HW3
CPU: 64 x 2 GHz 

L3: 16MB 
RAM: 1TB



Experiment: Accuracy of Cost Synthesis

Number of entries (log scale)

Cost Synthesis is sufficiently accurate!

Data Calculator Implementation



Experiment: Accuracy of Cost Synthesis

Cost synthesis is accurate for all experimented data structures!

 any interesting pattern?



Experiment: Accuracy of Cost Synthesis

      Why the result for trie is 
the least accurate?

For bulk loading, cost 
synthesis is accurate 



Cache-sensitive Design

How “far” each node is placed to each other

Crucial for calculating the cost of traversing data structure

Represented as layout primitive

Cache-Sensitive B+ Tree vs. B+ Tree



Experiment: Accuracy of Cost Synthesis 

It is accurate for CSB+ tree as well! 



Experiment: Accuracy of Cost Synthesis

Accuracy of cost synthesis
increases as skewness of 
workload increases.

 Why is that?

Why does it improve more for 
B+ Tree?



Experiment: Speed of Cost Synthesis

Training by seconds
vs.

Implementing by days



Experiment: Speed of Cost Synthesis
"What if we change our hardware from HW1 to HW3?"

20s

"Is there a better design for this new hardware and workload if we restrict search 
on a specific set of possible elements?" 

47s

"Would it be beneficial to add a Bloom filter in all B-tree leaves?"

"What if the query workload changes to have skew targeting just 
0.01% of the key space?"

20s

24s



Give Me a Better Design → in 30 Minutes!

Scenario 1: mixed read&write, all read are point queries in 20% of the domain

Scenario 2: mixed read&write, half of read are point queries in 10% of the domain, the other half are 
range queries in another 10% of the domain



Potential for improvement 

Introduction of more design elements 

Support for cost synthesis of advanced operations 
(such as point/range delete)

Optimization for cost synthesis

      Others?



Recap:

Design Primitives:

Fundamental building blocks for describing data structures.

Enables the exploration of a massive design space.

Learned Cost Models:

Predict operation latencies without implementation or workload execution.

Adaptable to hardware and workload profiles.

What-If Analysis:

Answer complex questions about design, hardware, and workload trade-offs interactively.

Auto-Completion:

Semi-automated synthesis of new data structures and auto-completion of partial designs.



Reflections
Ge:
The paper provides a transformative approach to data structure design by introducing a framework that combines 
fundamental design primitives and learned cost models to explore, synthesize, and evaluate a vast design space. The tool’s 
ability to predict costs without implementation or workload execution is particularly impressive.

Alec:

I enjoyed working on this paper, it provided a good framework for evaluating cost of more complex structures by breaking things 
down into the costs of their constituent parts, and accounts for differences in hardware (without the ambiguity of big O notation for 
actual numbers). It also provides algorithms for optimization rather than just being a tool to view results of a hypothetical data 
structure which is pretty neat. 

Minjie:

Even though nowadays when we design database we need to consider more factors like cloud storage, distributed environments 
and so on. This paper set up a nice starting point for how we can extend these ideas, combining them with new paradigms. 


