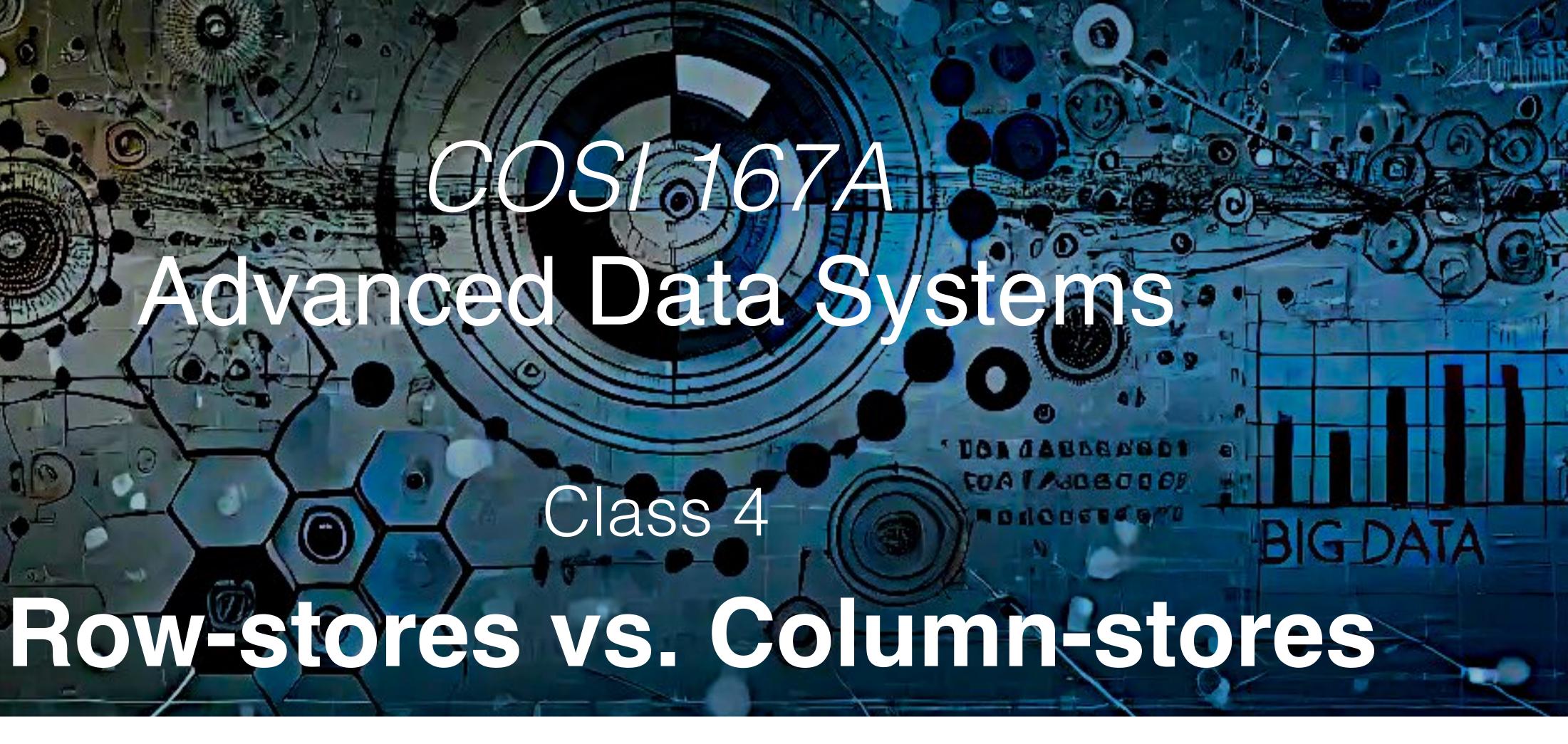
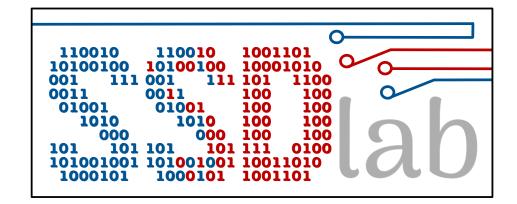
Prof. Subhadeep Sarkar

https://ssd-brandeis.github.io/COSI-167A/





Project 1 (C++/Java) has been **released** (due on Sep 20).

C/C++ learning resources at: https://ssd-brandeis.github.io/COSI-167A/assignments/

The second technical question is now available on the class website (due **before the class** on **Sep 17**).

Column-Stores vs. Row-Stores: How Different Are They **Really?**

Daniel J. Abadi Yale University New Haven, CT, USA dna@cs.yale.edu

MIT Cambridge, MA, USA

Samuel R. Madden madden@csail.mit.edu

Today in COSI 127B

What's on the cards?

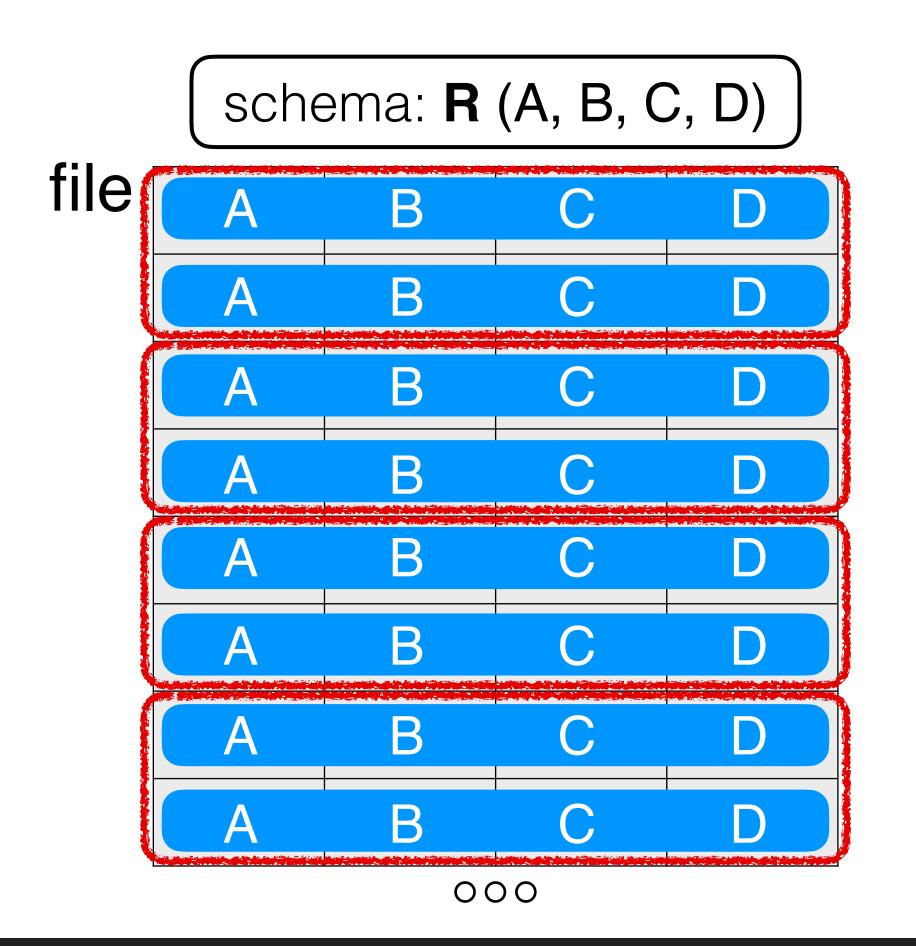
Nabil Hachem AvantGarde Consulting, LLC Shrewsbury, MA, USA nhachem@agdba.com

Column-Stores vs. Row-Stores How Different Are They Really?

Discussion points: Are column-stores really novel implementation-wise? Can row-stores be made to act like column-stores? What factors make column-stores special?

Row-stores

Storing row by row!



Row-stores are great for transactional workloads (OLTP).

Thought Experiment 1 Pros & cons of **row-stores**?

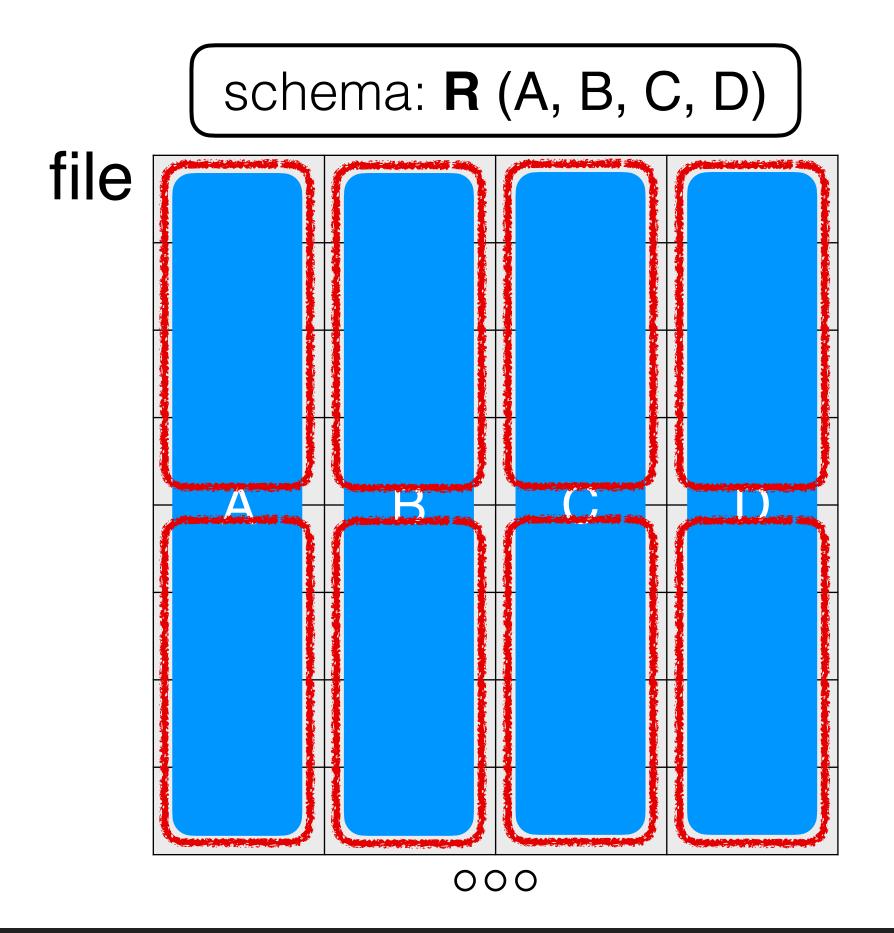
good for inserts/updates

good for queries accessing most/all columns

read amplification

Column-stores

Storing column-wise!



Column-stores are great for analytical workloads (OLAP).

Thought Experiment 2 Pros & cons of **column-stores**?

read necessary data only good for partial updates

inserts are costly • tuple reconstruction overhead

Goal of the paper

Dissecting row-stores and column-stores

Motivation: Prior to this paper, several studies highlighted

column-stores performing ~5x better than row-stores

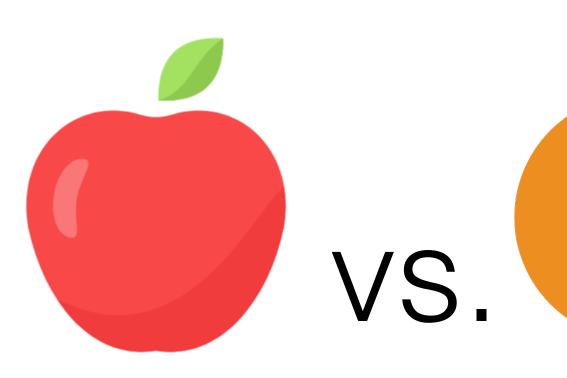
Goal: Compare row-stores and column-stores

Goal of the paper

Dissecting row-stores and column-stores

Motivation: Prior to this paper, several studies highlighted column-stores performing ~5x better than row-stores

Compare row-stores and column-stores Goal:



Goal of the paper

Dissecting row-stores and column-stores

Motivation: Prior to this paper, several studies highlighted

Goal: Can a column-store be simulated using a row-store?

column-store design?

column-stores performing ~5x better than row-stores

Are there benefits inherent to the

Can a column-store be simulated using a row-store? identify the key design differences modify a row-store to behave like a column-store

Are there benefits inherent to the column-store design? identify the **key optimizations** in a column-store relax the optimizations one at a time

Methodology of the paper

Dissecting row-stores and column-stores

Simulating column-store in a row-store

Specialized modifications

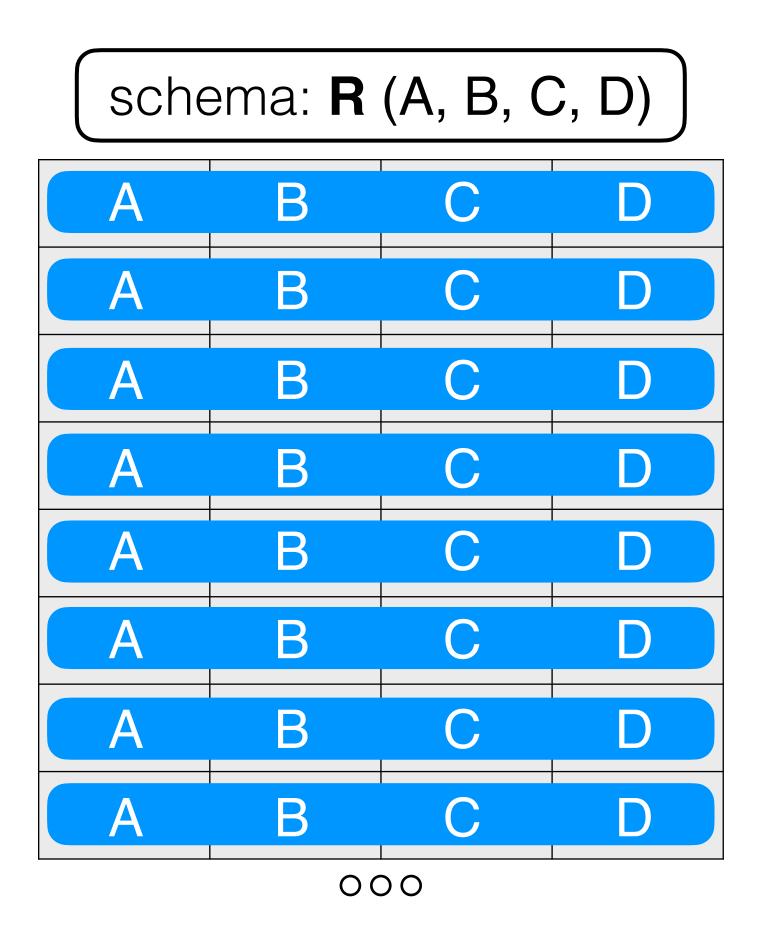
Simulating column-store in a row-store Specialized modifications

Vertical partitioning physically partition the data per column

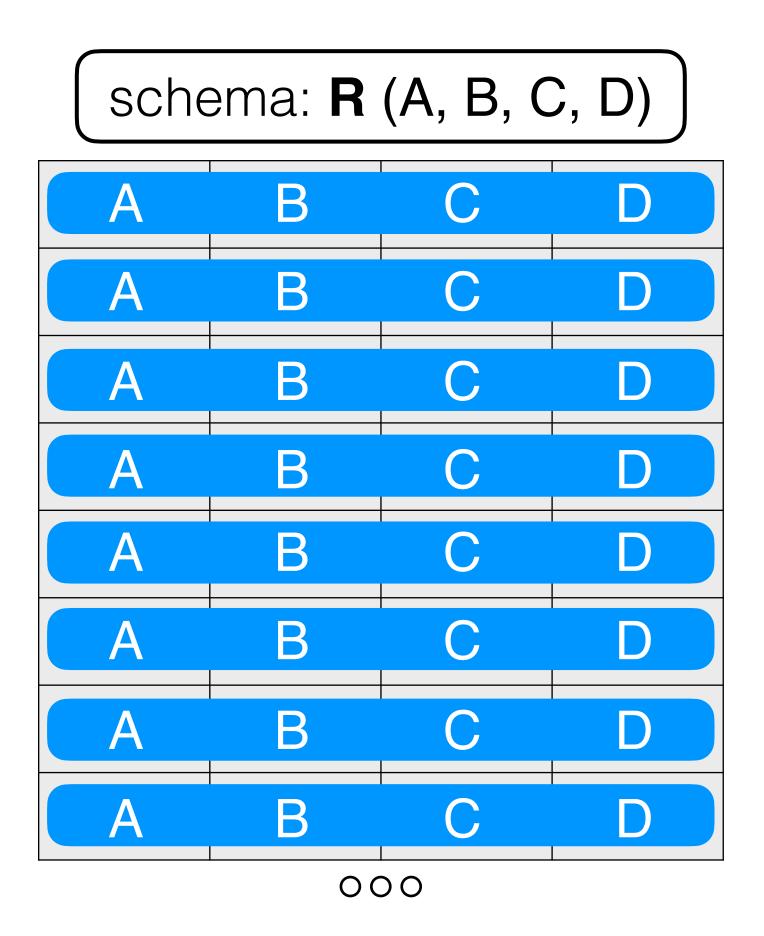
Index-only plans relevant columns

Materialized views to a query

- use only indexes in query plans that contain only
- temporary tables that contain exactly the answer

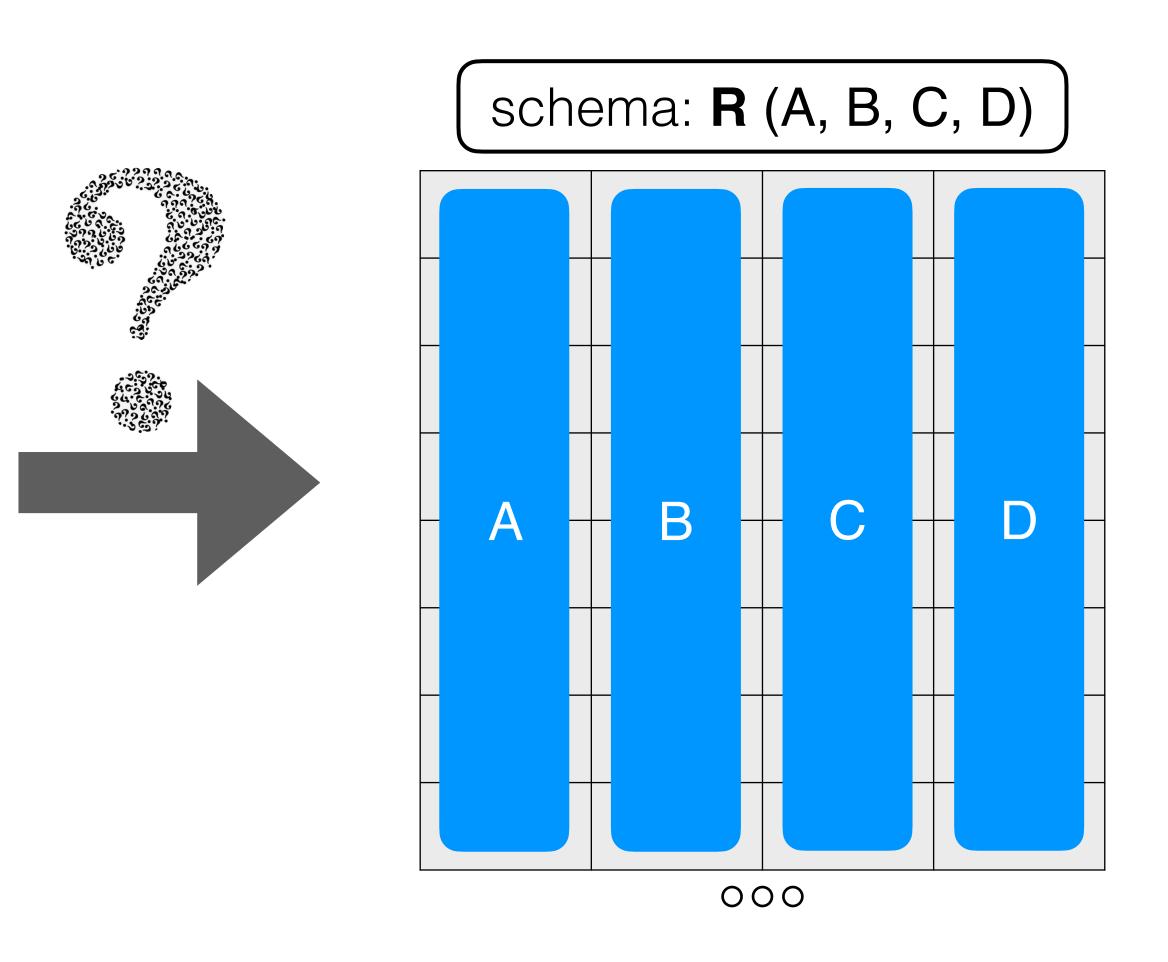


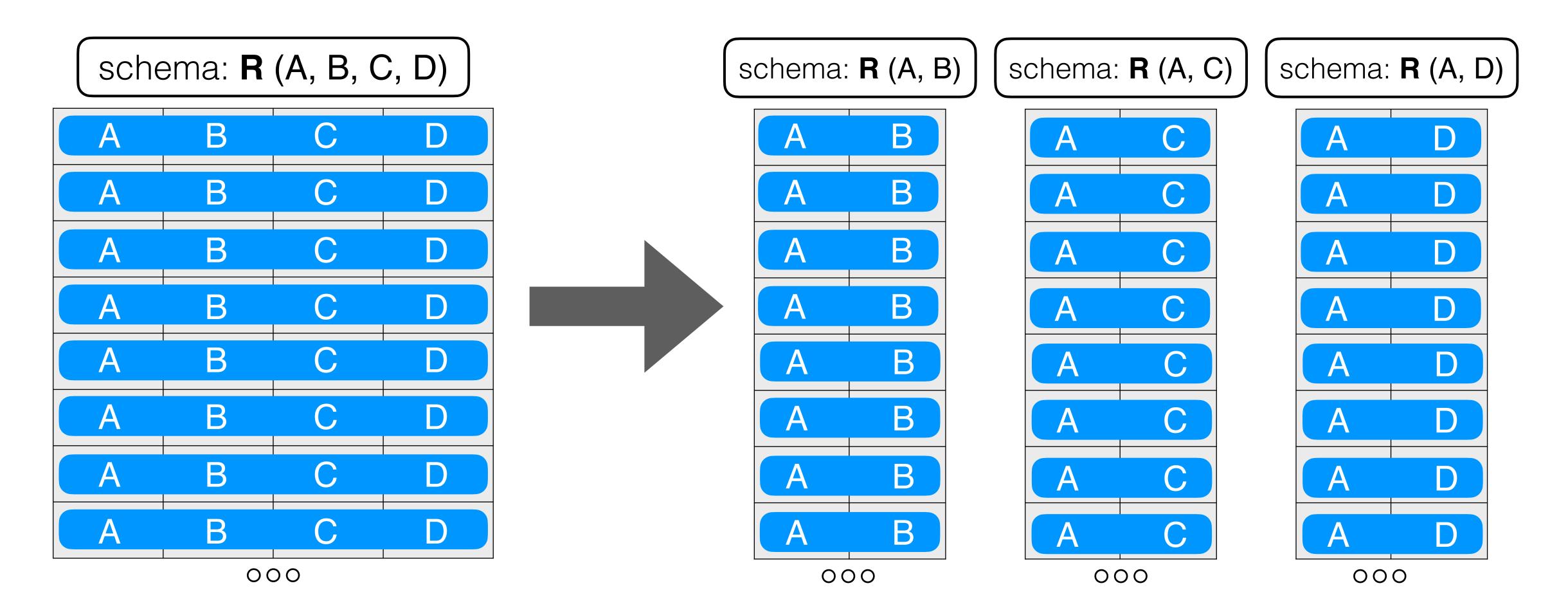
Vertical partitioning



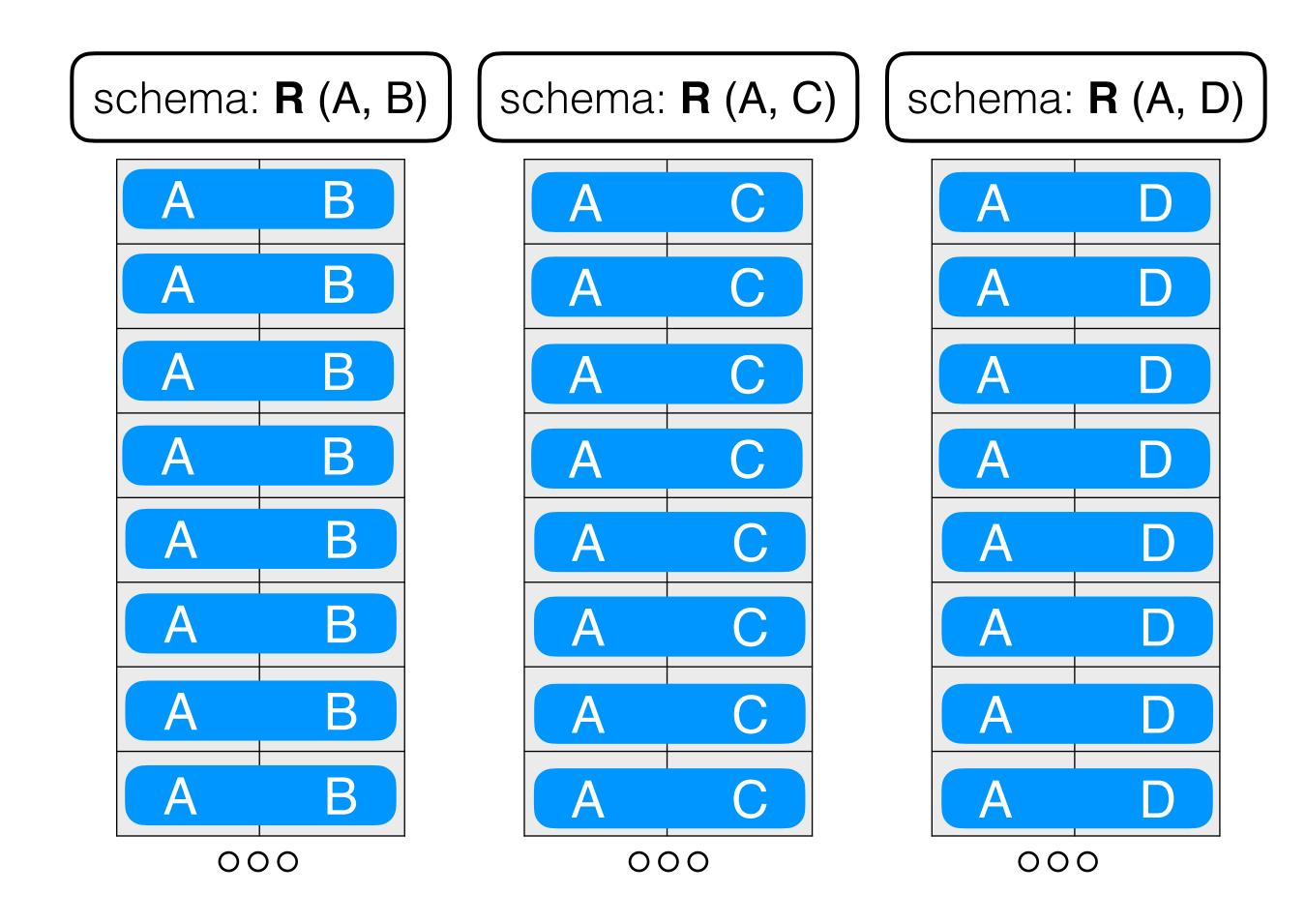
Vertical partitioning

Physically partition the data per column

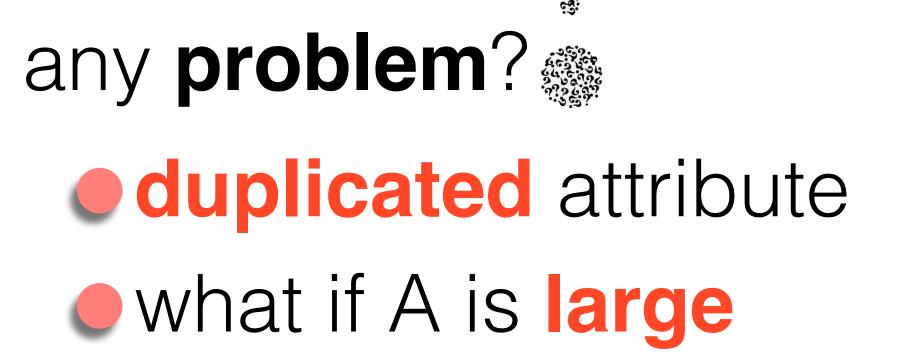


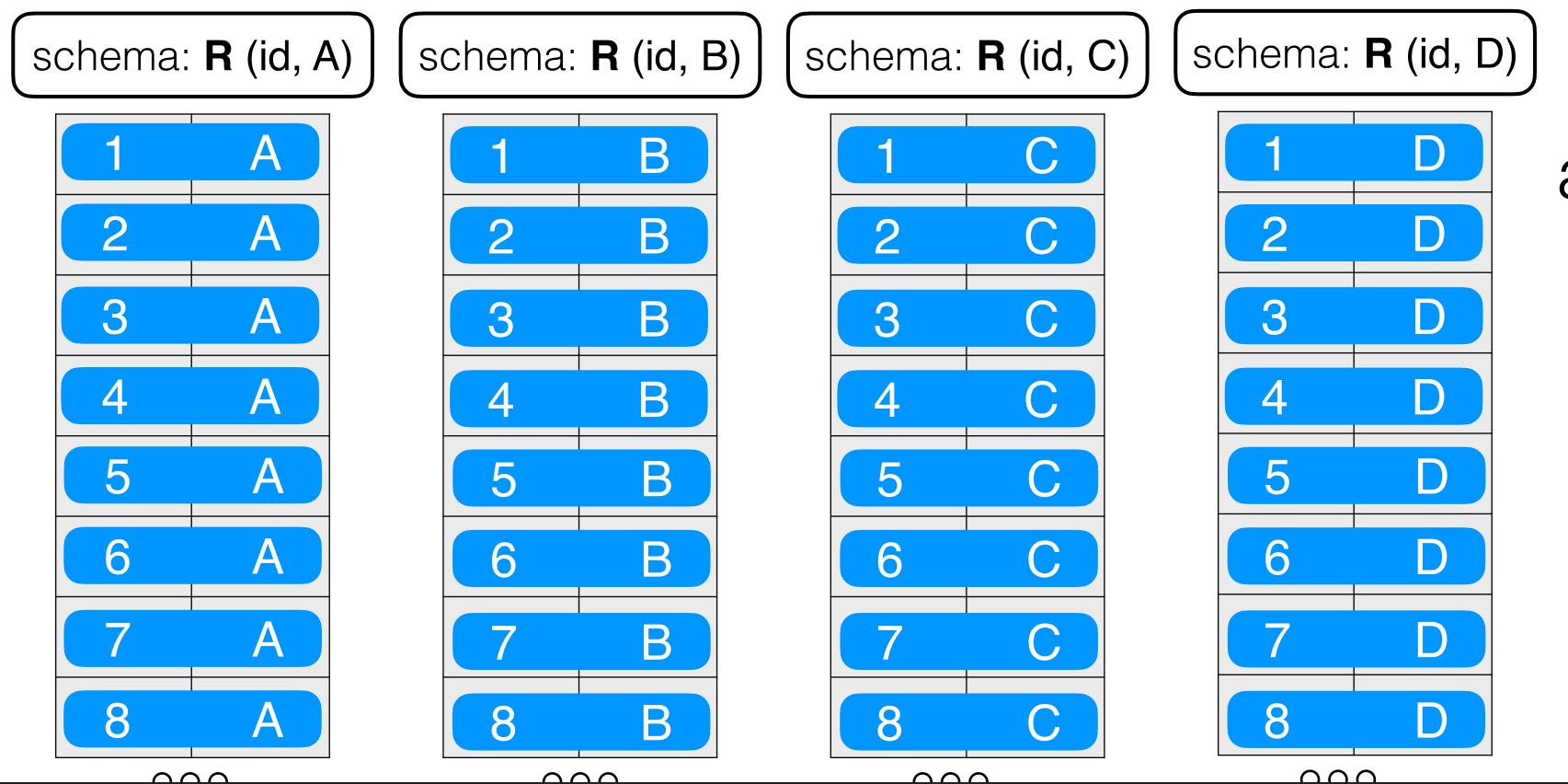


Vertical partitioning



Vertical partitioning



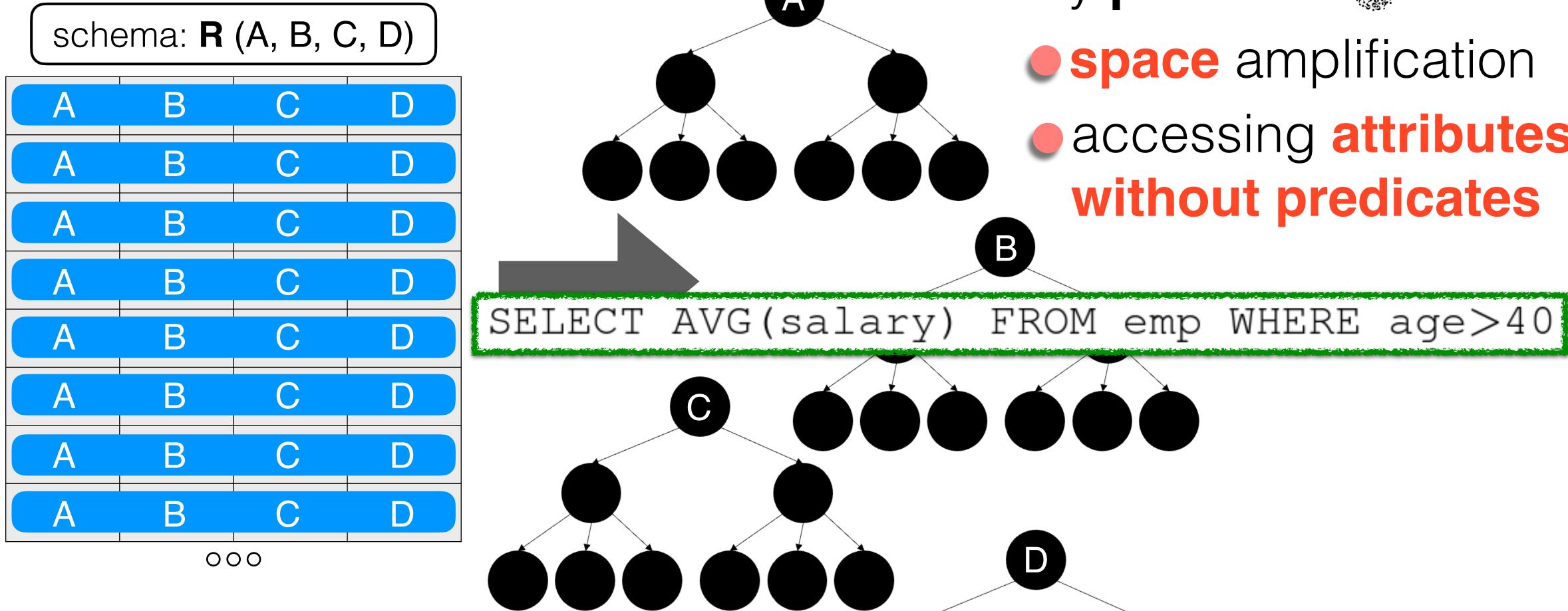


Vertical partitioning

any problem? • duplicated attribute **o**tuple header

Native column-stores only store raw values as an array.

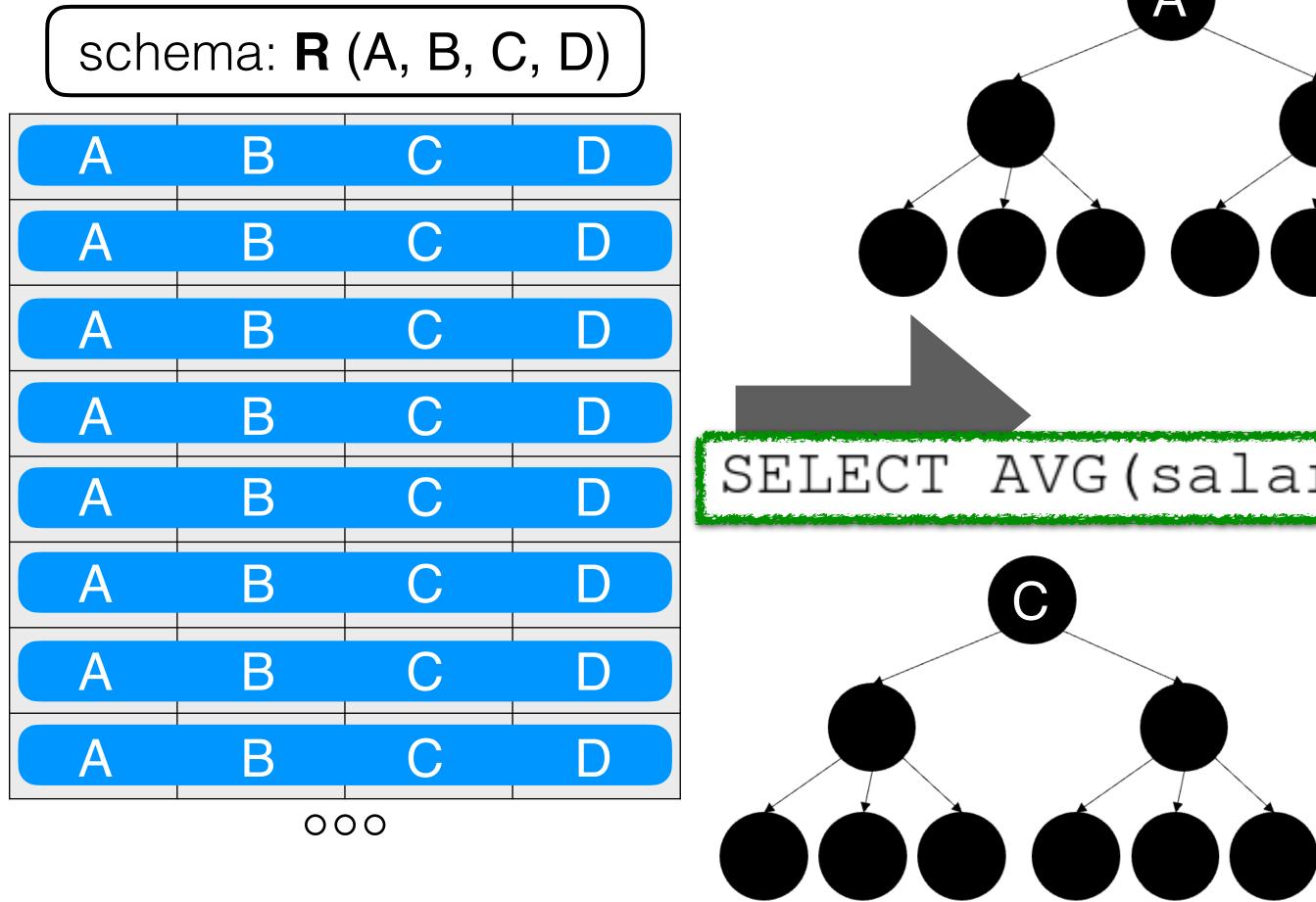
Only indexes in query plans



Index-only plans

any problem? A space amplification accessing attributes without predicates

Only indexes in query plans



Index-only plans

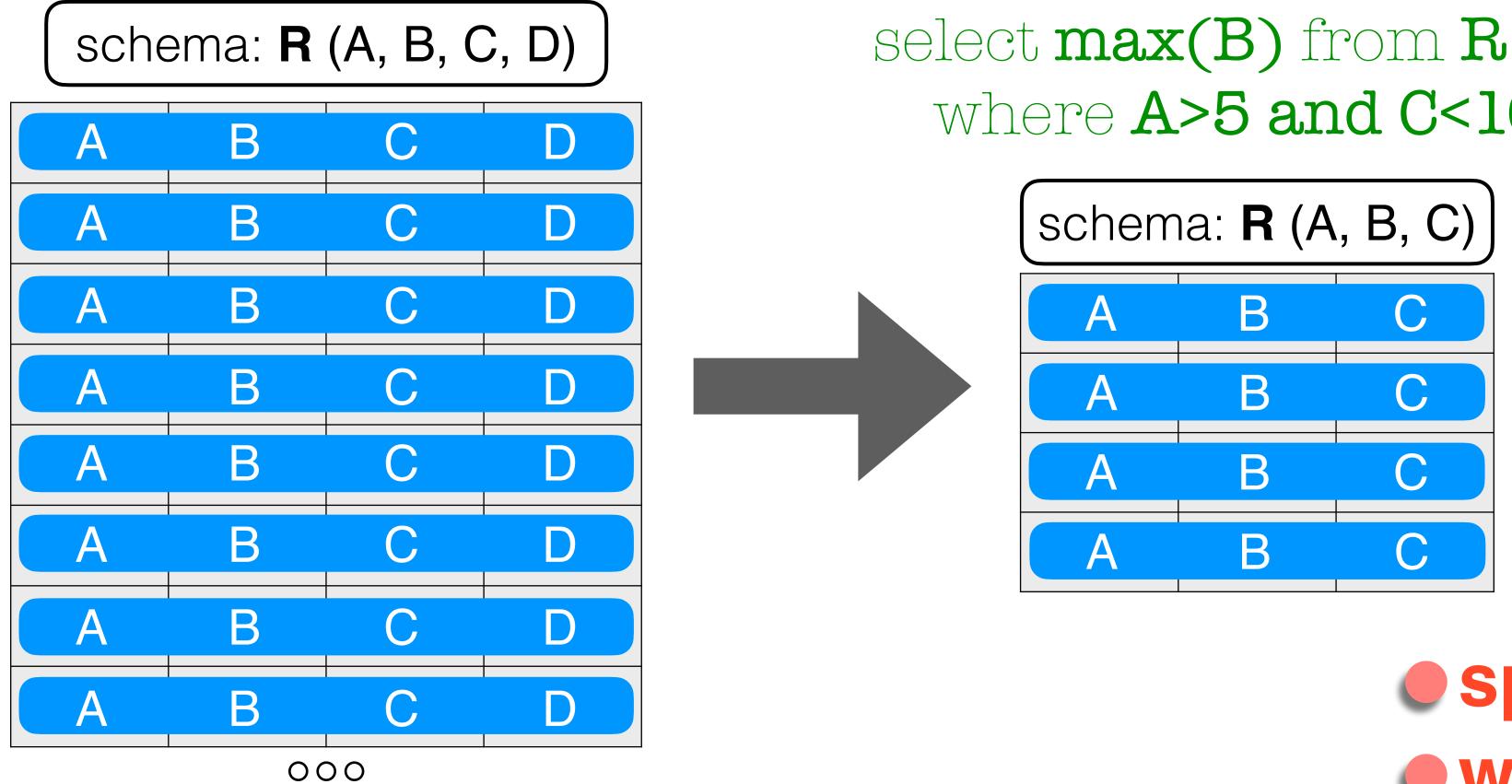
any problem? space amplification accessing attributes without a predicate

FROM emp WHERE SELECT AVG(salary) age>40

Composite index needs more space workload knowledge

Materialized views

Tables with exact answers to queries



where A>5 and C<10

any problem?

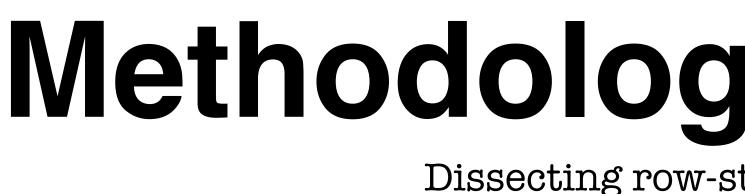
space amplification workload knowledge

Can a column-store be simulated using a row-store? identify the key design differences modify a row-store to behave like a column-store

Are there benefits inherent to the column-store design? identify the **key optimizations** in a column-store relax the optimizations one at a time

Methodology of the paper

Dissecting row-stores and column-stores



identify the key design differences modify a row-store to behave like a column-store

identify the **key optimizations** in a column-store relax the optimizations one at a time

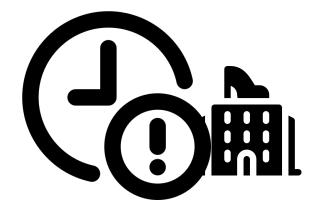
Methodology of the paper Dissecting row-stores and column-stores

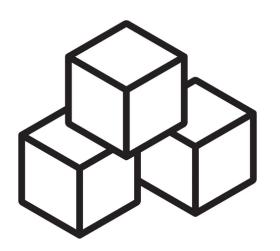
- Can a column-store be simulated using a row-store?
- Are there benefits inherent to the column-store design?

State-of-the-art column-store designs

Identifying the optimizations

State-of-the-art column-store designs Identifying the optimizations





Late materialization

Block iteration

Compression **column-specific compression**

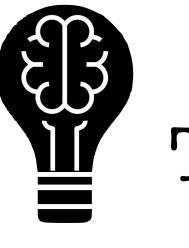
Invisible join

stitch the columns together as late as possible

execute columnar operations over a **block of values**

Querying in a column-store

schema: R (A, B, C, D) B \square A 000



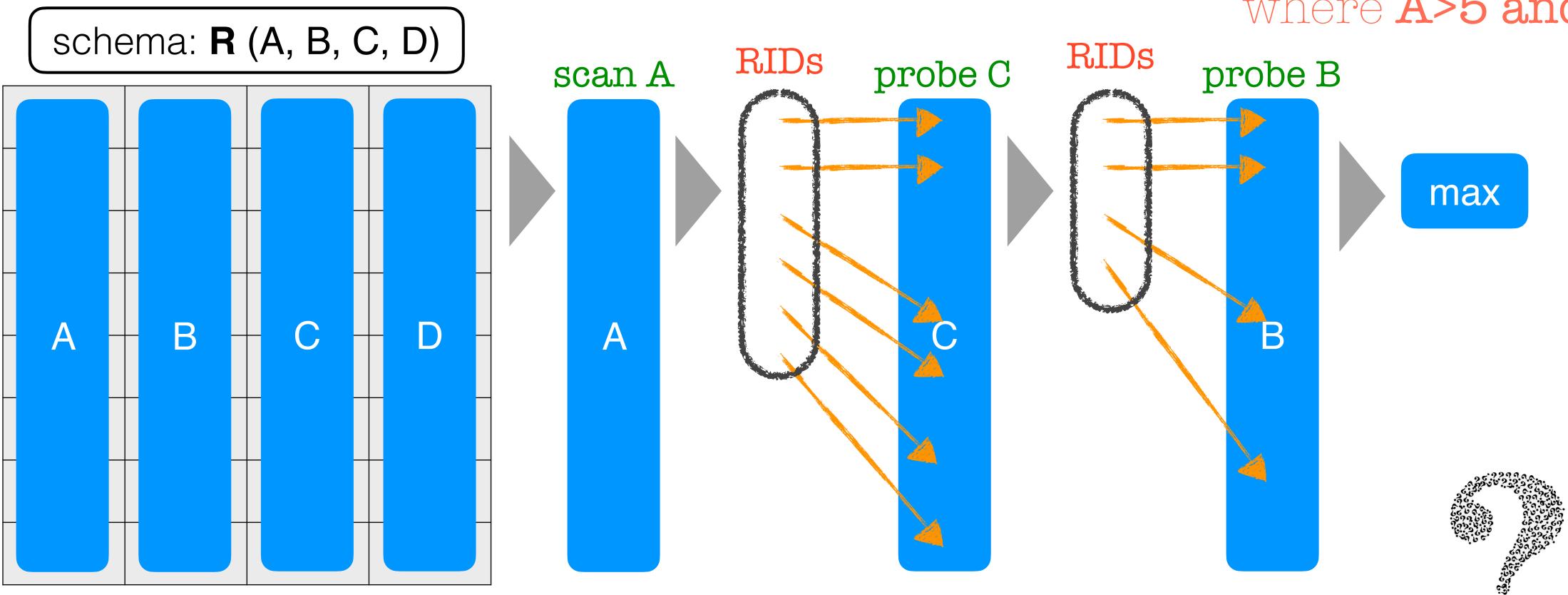
Understanding the schema

Thought Experiment

select max(B) from R where A>5 and C<10

Home work!

Querying in a column-store Understanding the schema

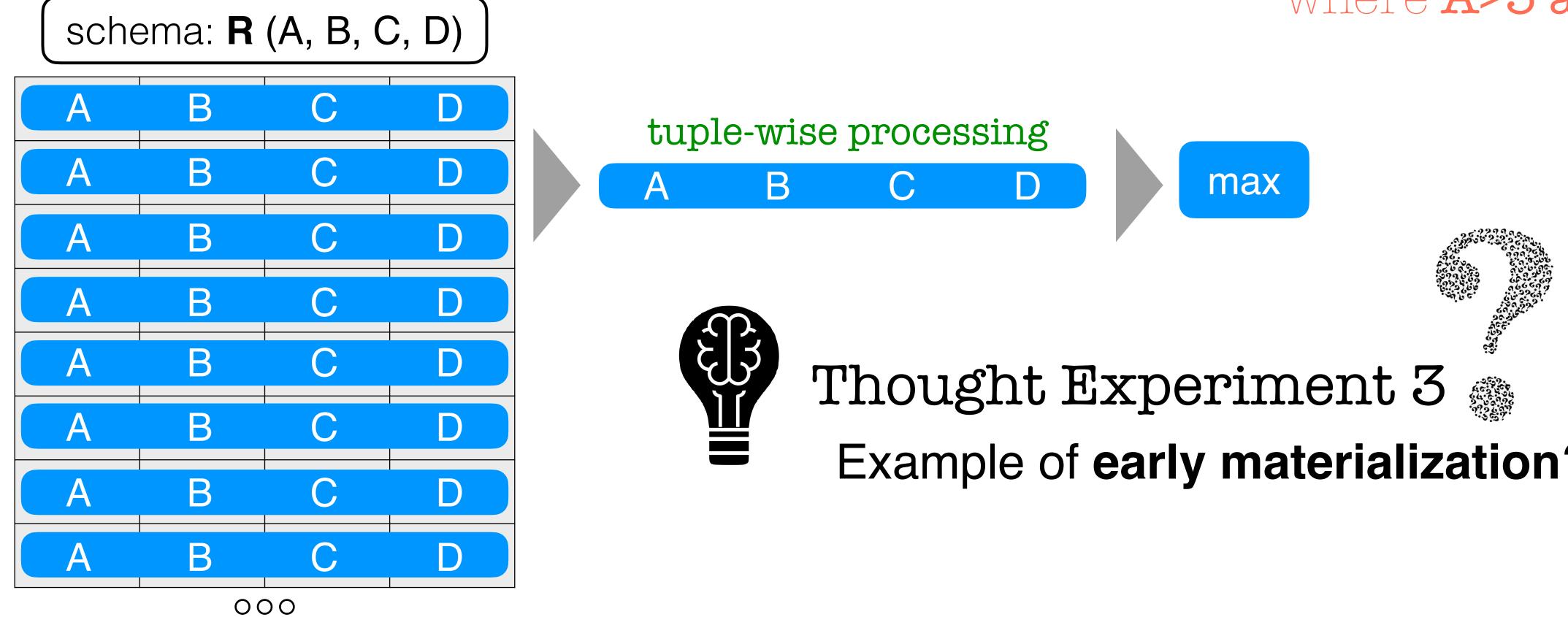


000

select max(B) from R where A>5 and C<10

when do we see the result? Late materialization

Querying in a row-store Understanding the schema

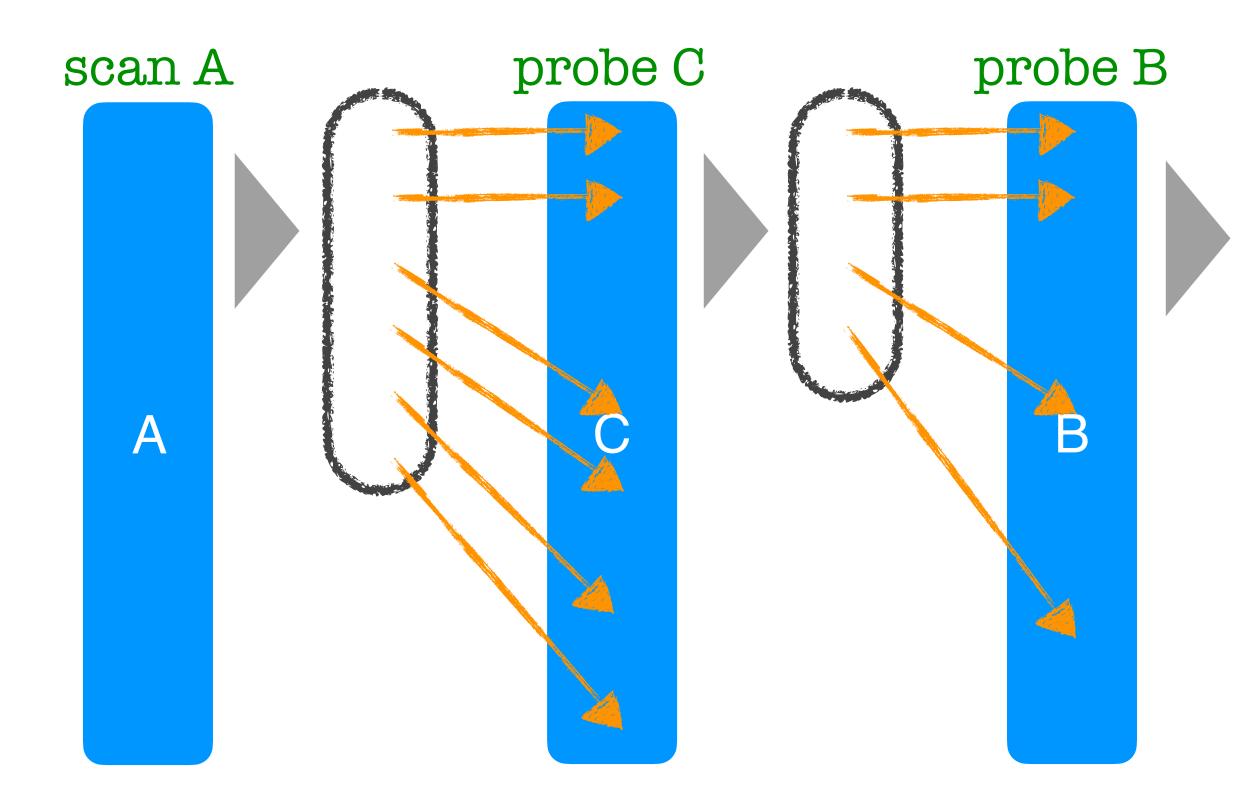


select max(B) from R where A>5 and C<10

Example of early materialization?

Late materialization

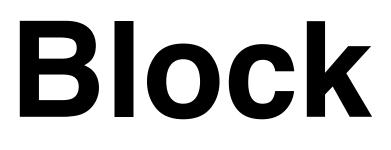
stitch the columns together as late as possible

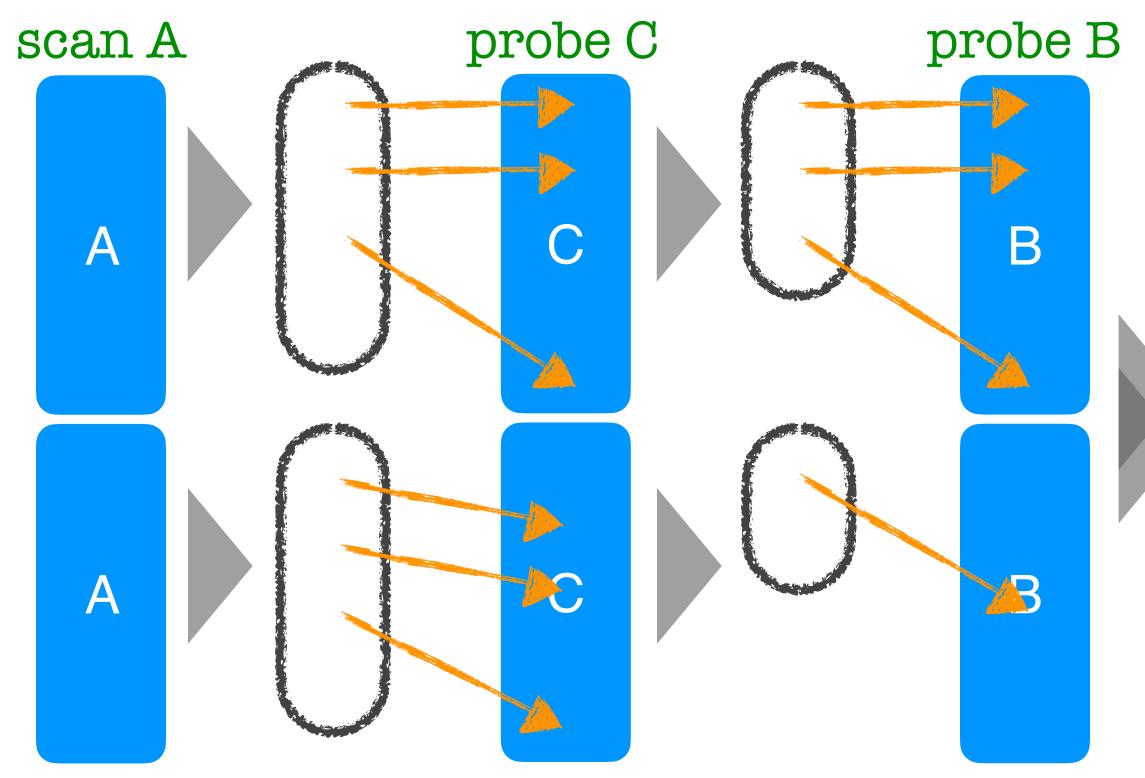


minimal reconstruction operate efficiently on compressed data

any problem?

or resource utilization may require more I/Os





Block iteration

execute columnar operations over a block of values select max(B) from Rwhere A>5 and C<10

advantages? good resource utilization max low query latency

Compression

row-store

column-specific strategies

Alphabet	Q1	Jan 1, 2024	San Fransicco
Apple	Q1	Jan 11, 2024	Massachusetts
Netflix	Q1	Jan 12, 2024	San Fransicco
Cloudflare	Q1	Jan 12, 2024	Washington
Alphabet	Q2	Jun 17, 2024	San Fransicco
Microsoft	Q2	Jul 17, 2024	Washington
Apple	Q2	Jul 27, 2024	Massachusetts
Alphabet	Q3	Sep 10, 2024	San Fransicco
000			

Compression

row-store

schema: Billing (org,	quarter, date, state)
-----------------------	-----------------------

Alphabet	Q1	Jan 1, 2024	San Fransicco
Apple	Q1	Jan 11, 2024	Massachusetts
Netflix	Q1	Jan 12, 2024	San Fransicco
Cloudflare	Q1	Jan 12, 2024	Washington
Alphabet	Q2	Jun 17, 2024	San Fransicco
Microsoft	Q2	Jul 17, 2024	Washington
Apple	Q2	Jul 27, 2024	Massachusetts
Alphabet	Q3	Sep 10, 2024	San Fransicco
000			

column-specific strategies

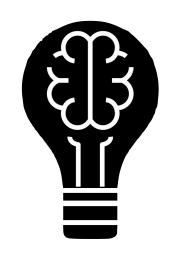
Homogeneous data

column-stores

which one is easily compressible?

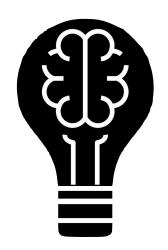
column-stores

Alphabet	Q1	Jan 1, 2024	San Fransicco
Apple	Q1	Jan 11, 2024	Massachusetts
Netflix	Q1	Jan 12, 2024	San Fransicco
Cloudflare	Q1	Jan 12, 2024	Washington
Alphabet	Q2	Jun 17, 2024	San Fransicco
Microsoft	Q2	Jul 17, 2024	Washington
Apple	Q2	Jul 27, 2024	Massachusetts
Alphabet	Q3	Sep 10, 2024	San Fransicco
000	000	000	000



Thought Experiment 4 How do column-stores compress data efficiently?

column-stores



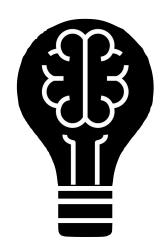
Thought Experiment 4 How do column-stores compress data efficiently?

100M entries; 100K+ unique organizations

Dictionary compression Replace variable-length strings with fixed-sized integers

column-stores

Alphabet	Q1	Jan 1, 2024	San Fransicco
Apple	Q1	Jan 11, 2024	Massachusetts
Netflix	Q1	Jan 12, 2024	San Fransicco
Cloudflare	Q1	Jan 12, 2024	Washington
Alphabet	Q2	Jun 17, 2024	San Fransicco
Microsoft	Q2	Jul 17, 2024	Washington
Apple	Q2	Jul 27, 2024	Massachusetts
Alphabet	Q3	Sep 10, 2024	San Fransicco
000	000	000	000



Thought Experiment 4 How do column-stores **compress data** efficiently?

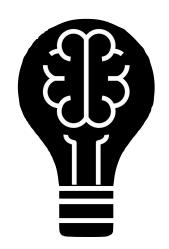
100M entries; 100K+ unique organizations

Dictionary compression

Replace variable-length strings with fixed-sized integers

Use a constant number of bits if the domain is fixed

column-stores

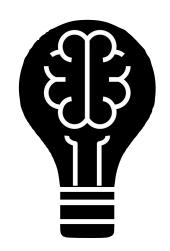


Thought Experiment 4 How do column-stores **compress data** efficiently?

100M entries; 50 states

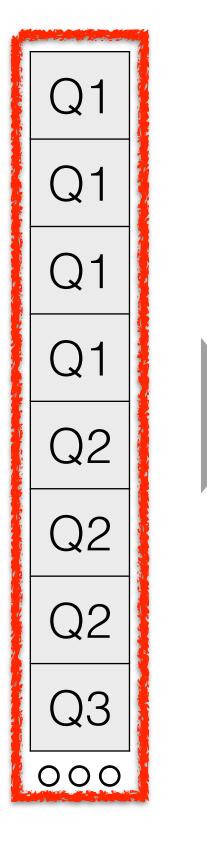
Delta compression Store only the **deltas** (differences)

column-stores



Thought Experiment 4 How do column-stores **compress data** efficiently?

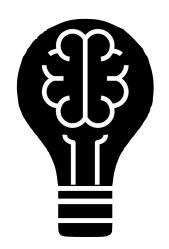
200 Q1's, 300 Q2's, 1000 Q3's, ...



Q1	1	200
Q2	201	300
Q3	301	1300
Q4	1301	2500

Compression

column-specific strategies



Thought Experiment 4 How do column-stores compress data efficiently?

200 Q1's, 300 Q2's, 1000 Q3's, 1200 Q4's, ...

Run-length encoding Store only the start index & frequency

> Can operate on compressed data Needs to be **sorted**

Invisible join Star-schema specific optimization

Benchmarking

When comparing database systems we need a common "language" standardization is key for future comparison

Benchmarks from the Transaction Performance Council TPC-B, TPC-C, TPC-H, TPC-DS, etc.

Also, a benchmark for data warehousing Star Schema Benchmark

The set up!

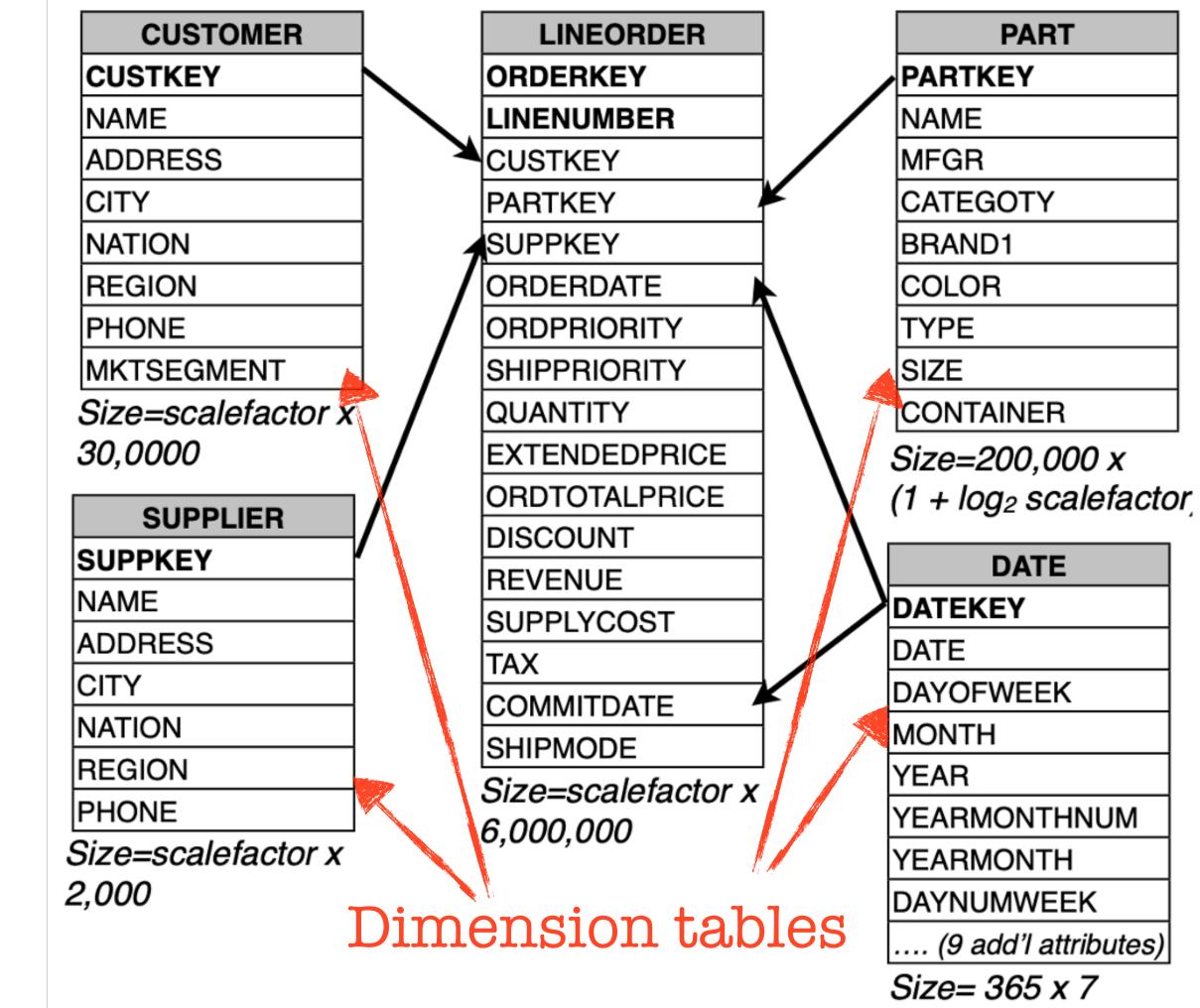
Star Schema Benchmark

Fact table and Dimension tables

Comes with **13 queries**!

```
select sum(lo_extendedprice*lo_discount) as revenue
from lineorder, date
where lo orderdate = d datekey and
     d year = 1993 and
     lo discount between 1 and 3 and
     lo quantity < 25;
SELECT c.nation, s.nation, d.year,
       sum(lo.revenue) as revenue
FROM customer AS c, lineorder AS lo,
     supplier AS s, dwdate AS d
WHERE lo.custkey = c.custkey AND
      lo.suppkey = s.suppkey AND
      lo.orderdate = d.datekey AND
      c.region = 'ASIA' AND s.region = 'ASIA' AND
      d.year >= 1992 and d.year <= 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;
```

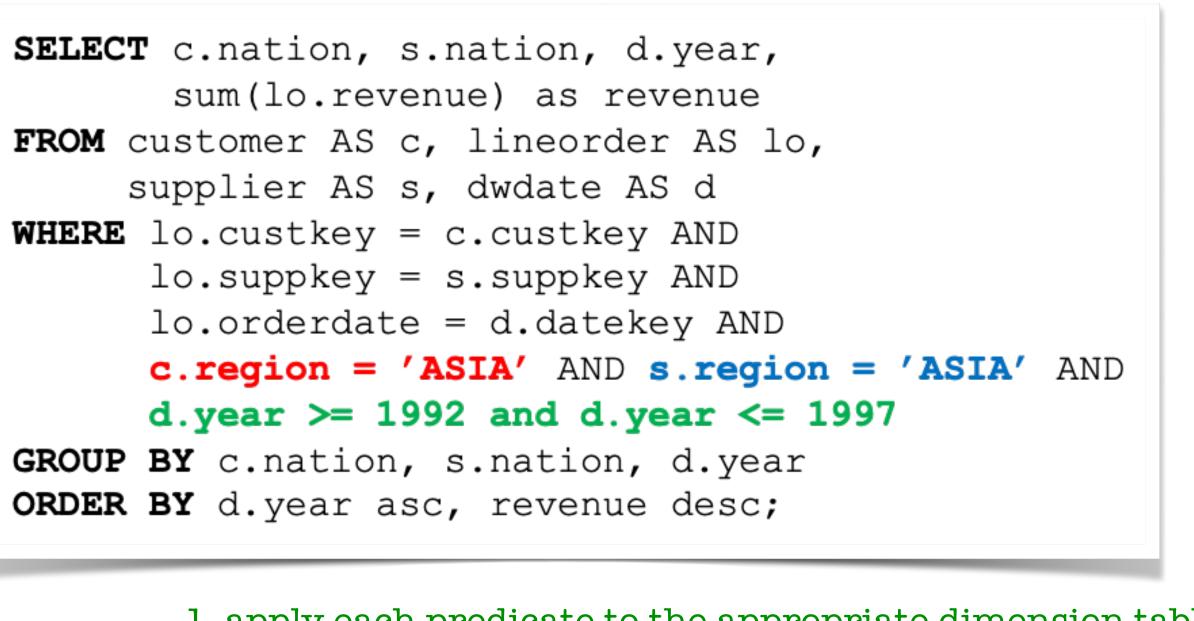

Fact table



Motivation: rewrite joins as **predicates on foreign keys in fact table**

Algorithm:

- 1. apply each predicate to the appropriate dimension table
- 2. build a hash table on matching keys
- 3. compute bitvector with bits set for qualifying positions (tuples)
- 4. intersect bitvectors (positions) via bitwise AND
- 5. for each resulting position reconstruct the resulting tuple



1. apply each predicate to the appropriate dimension table

2. build a hash table on matching keys

Apply region = 'Asia' on Customer table

custkey	region	nation	
1	Asia	China	 Hash table
2	Europe	France	 with keys 1 and 3
3	Asia	India	

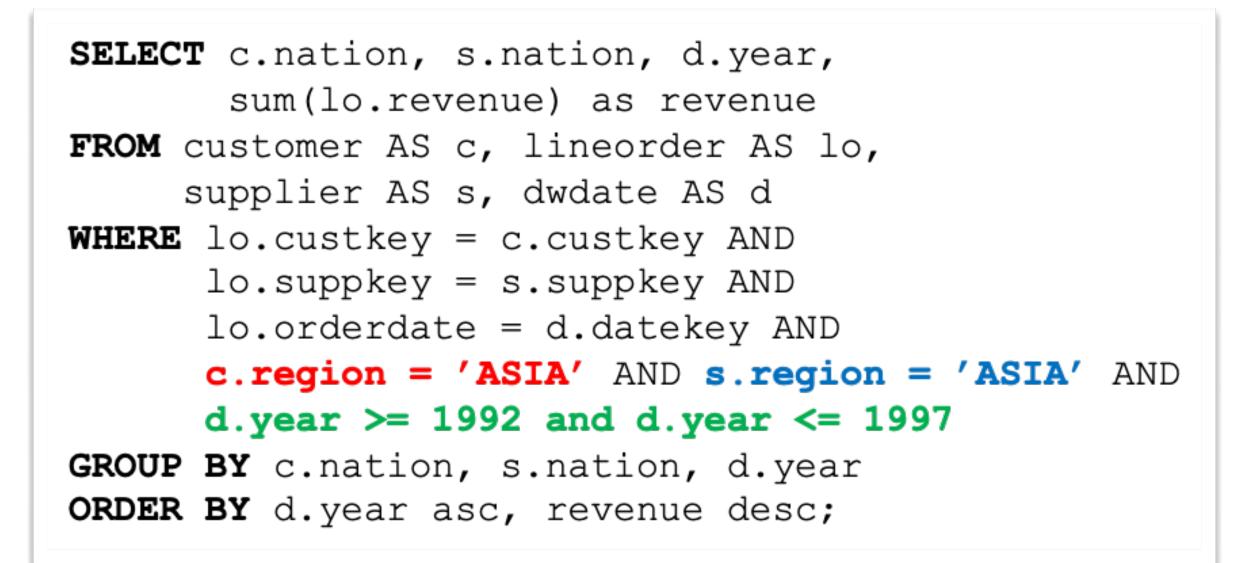
Apply region = 'Asia' on Supplier table

suppkey	region	nation	
1	Asia	Russia	 Hash table with key 1
2	Europe	Spain	 with Key I

Apply year in [1992,1997] on Date table

dateid	year	
01011997	1997	
01021997	1997	
01031997	1997	

Hash table with keys 01011997, 01021997, and 01031997



1. apply each predicate to the appropriate dimension table

2. build a hash table on matching keys

Apply region = 'Asia' on Customer table

custkey	region	nation	
1	Asia	China	 Hash table
2	Europe	France	 with keys 1 and 3
3	Asia	India	

Apply region = 'Asia' on Supplier table

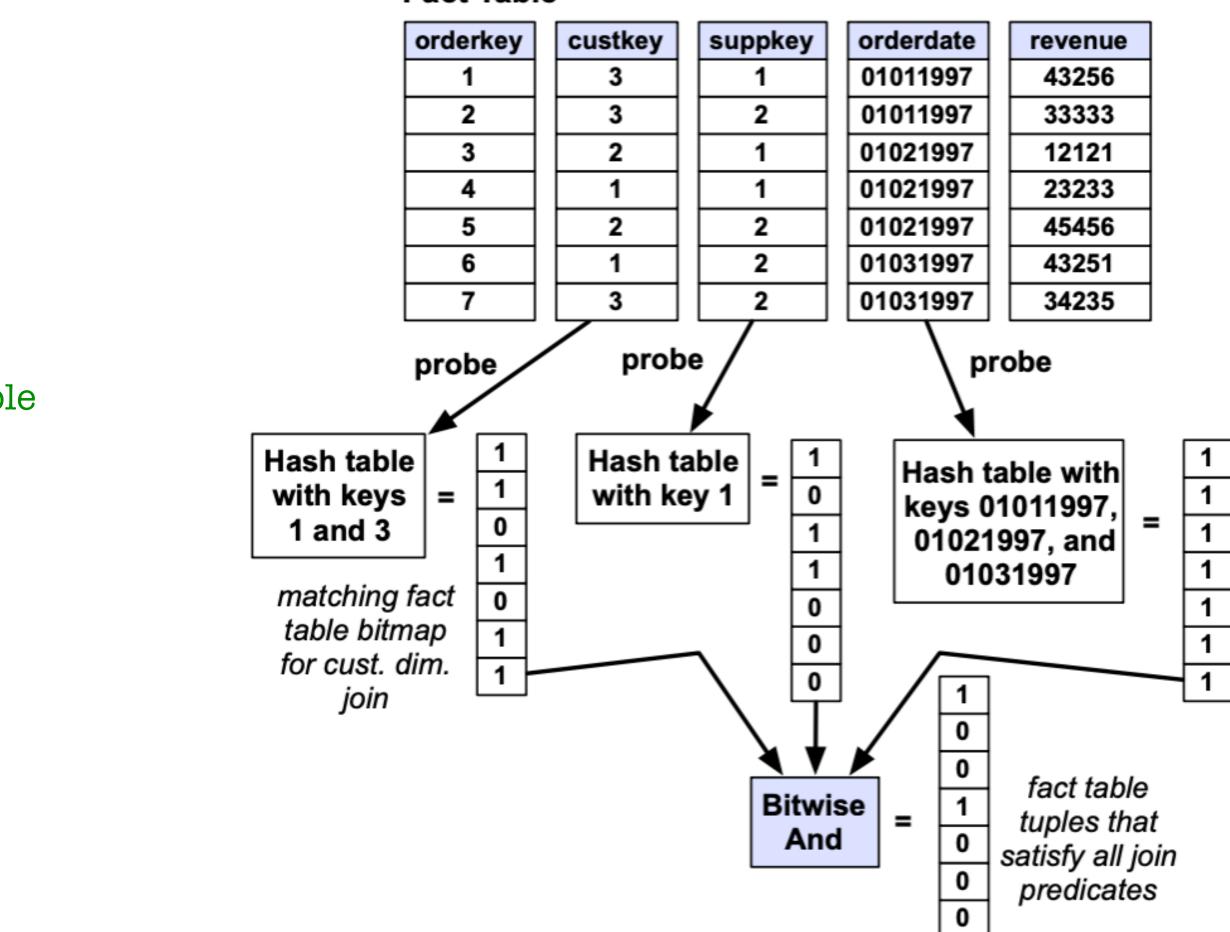
suppkey	region	nation	
1	Asia	Russia	 Hash table with key 1
2	Europe	Spain	 with Key I

Apply year in [1992,1997] on Date table

dateid	year	
01011997	1997	
01021997	1997	
01031997	1997	

Hash table with keys 01011997, 01021997, and 01031997

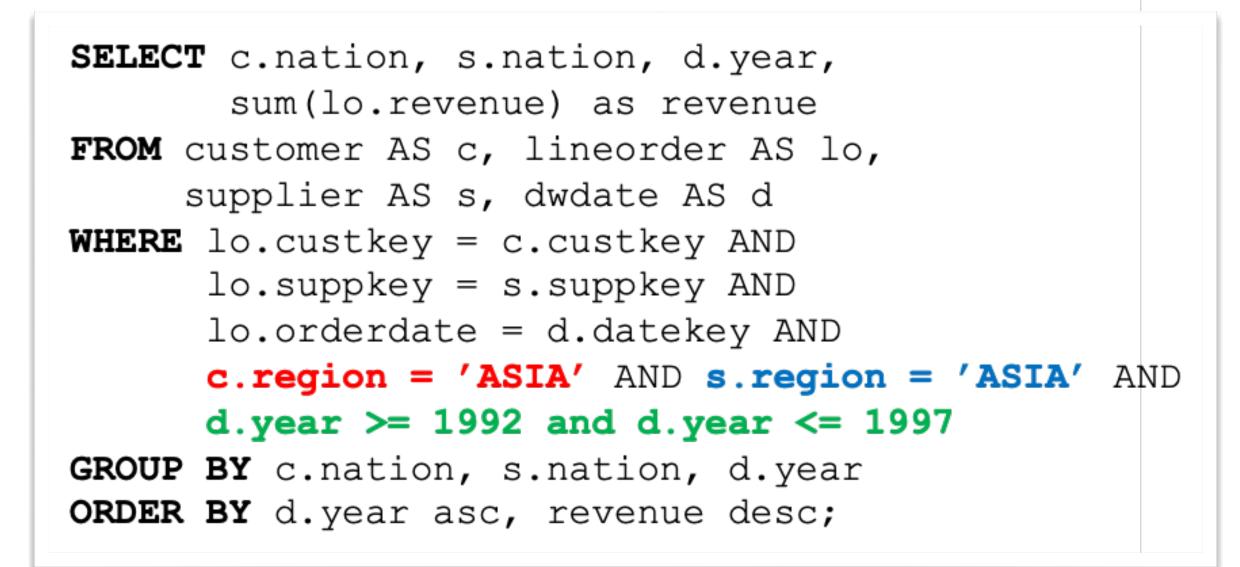
3. compute bitvector with bits set for qualifying positions (tuples)



Fact Table

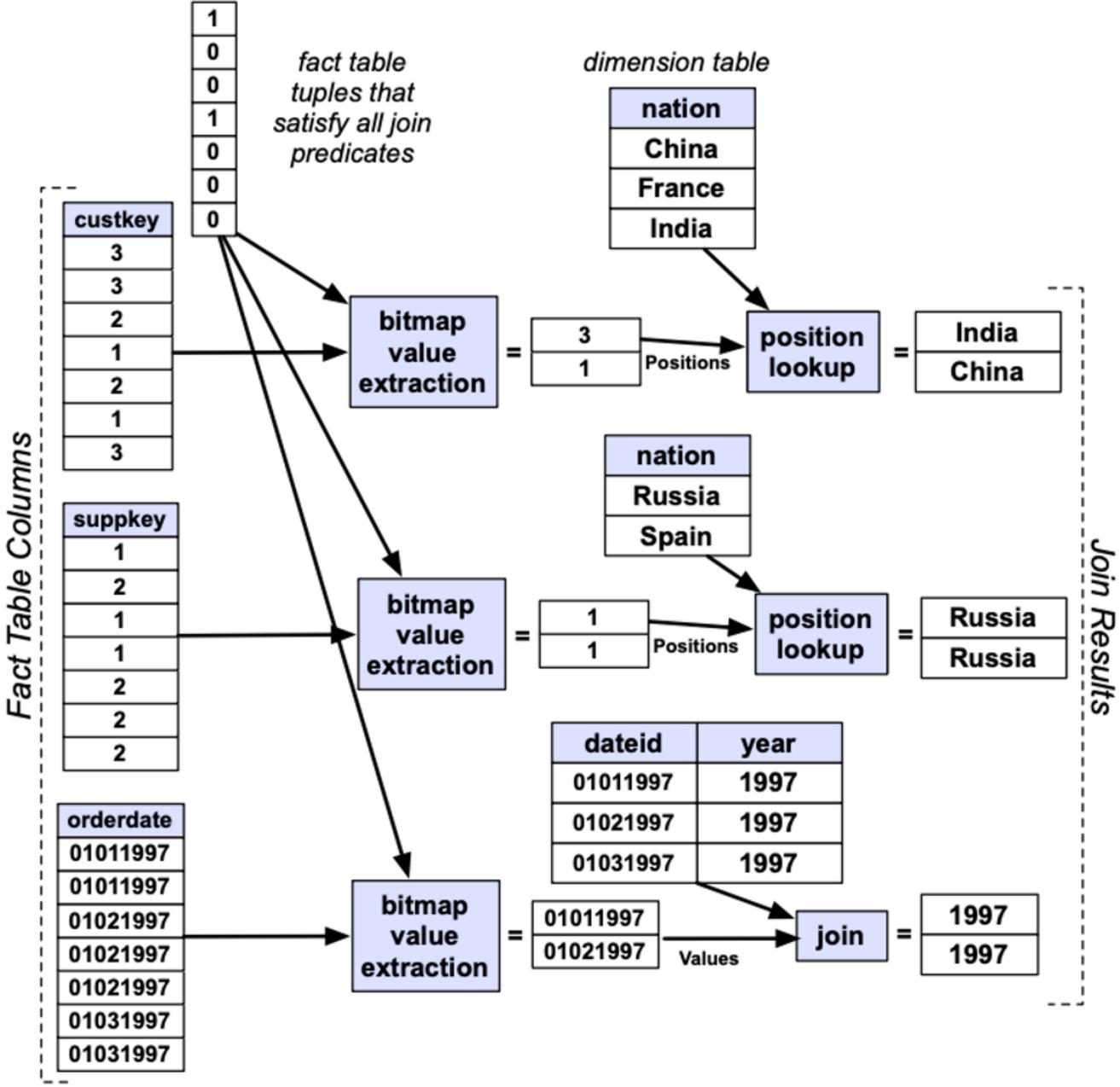
4. intersect bitvectors (positions) via bitwise AND

	1
	1
•	1
	1
	1
	1
	1



5. for each resulting position reconstruct the resulting tuple

works only for star schemas not a general join algorithm



Experiments

Comparing the results

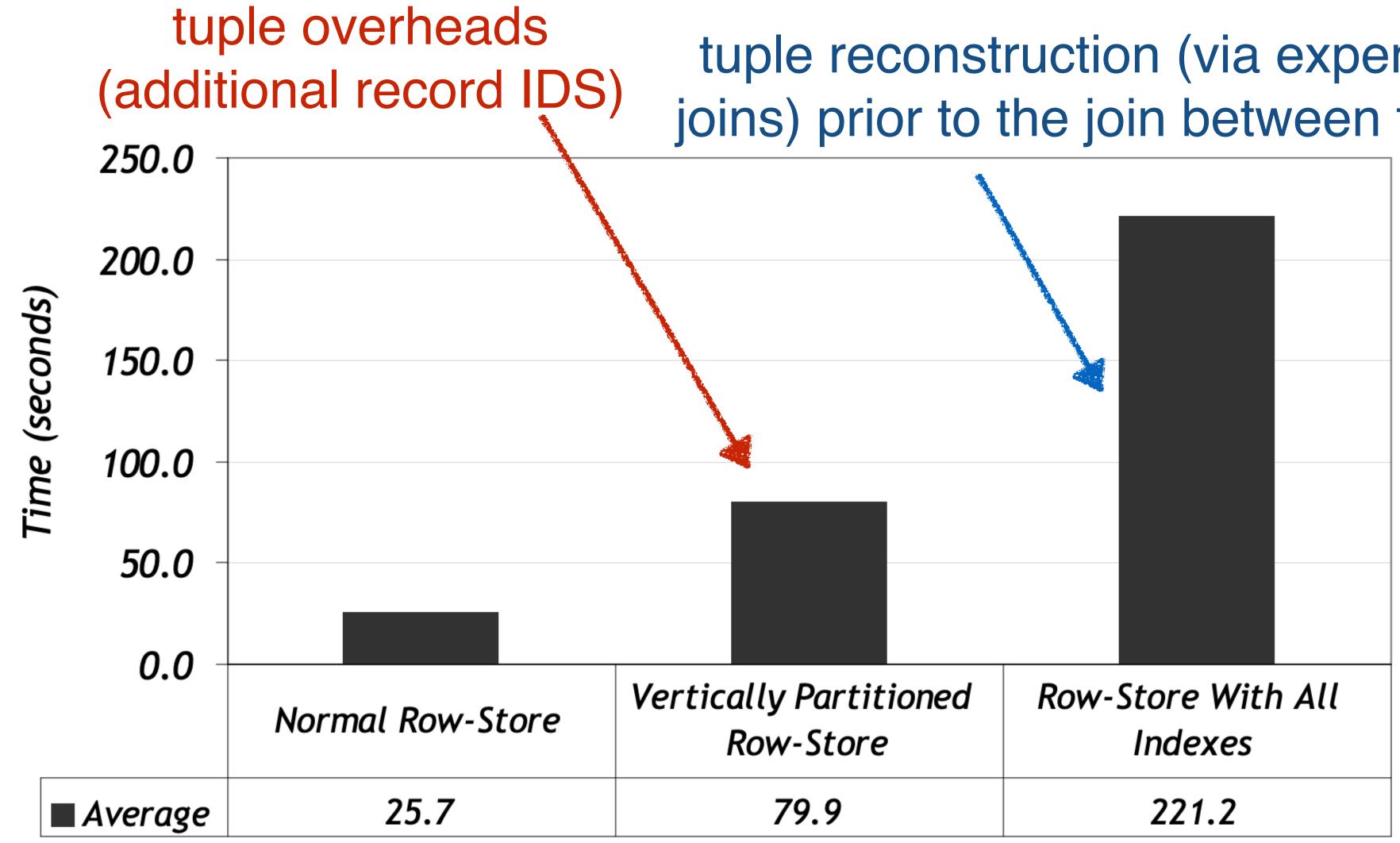
1 CPU 2.8GHz, 3GB RAM, Red Hat Linux 5 4-disk HDD array with 160-200MB/s aggregate bandwidth (older paper, so small numbers!) Report averages with "warm" bufferpool (smaller than data size) Focus on SSB averages (the paper has more detailed graphs)

Experiments

Comparing the results

Experiments with row-stores

Comparing the results



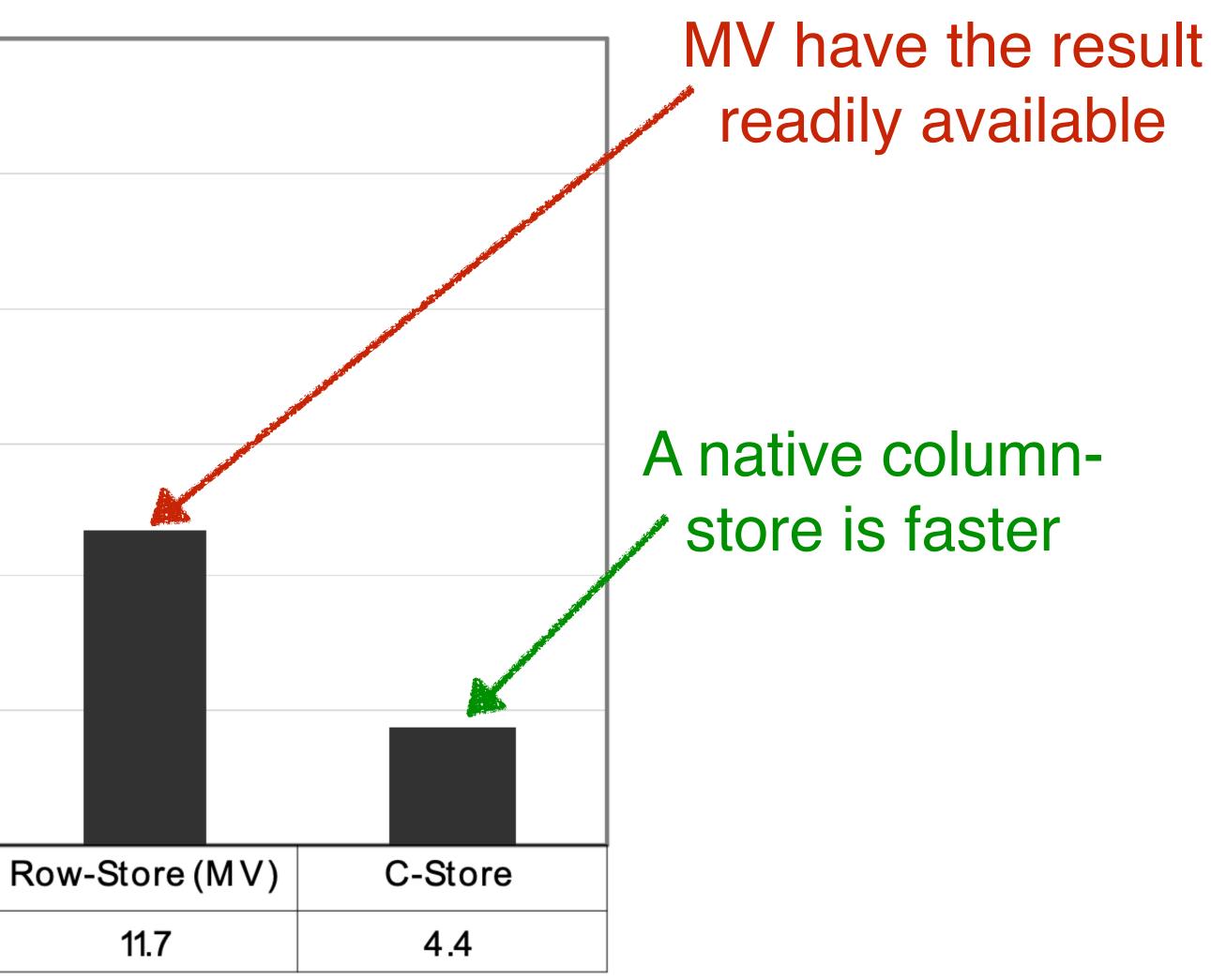
tuple reconstruction (via expensive joins) prior to the join between tables



Row-stores vs. column-stores

30.0 25.0 20.0 Time (seconds) 15.0 10.0 5.0 0.0 **Row-Store** 25.7 Average

Comparing the results



Row-stores vs. column-stores

Comparing the results

- 50.0
- 40.0To make the most of a column-
store:1. efficient compression1. efficient compression2. column-specific execution
- (late materialization)

0.0

Average

10.0

_				
	Original C-Store	C-Store, No Compression	C-Store, Early Materialization	Row-Sto
	4.4	14.9	40.7	25

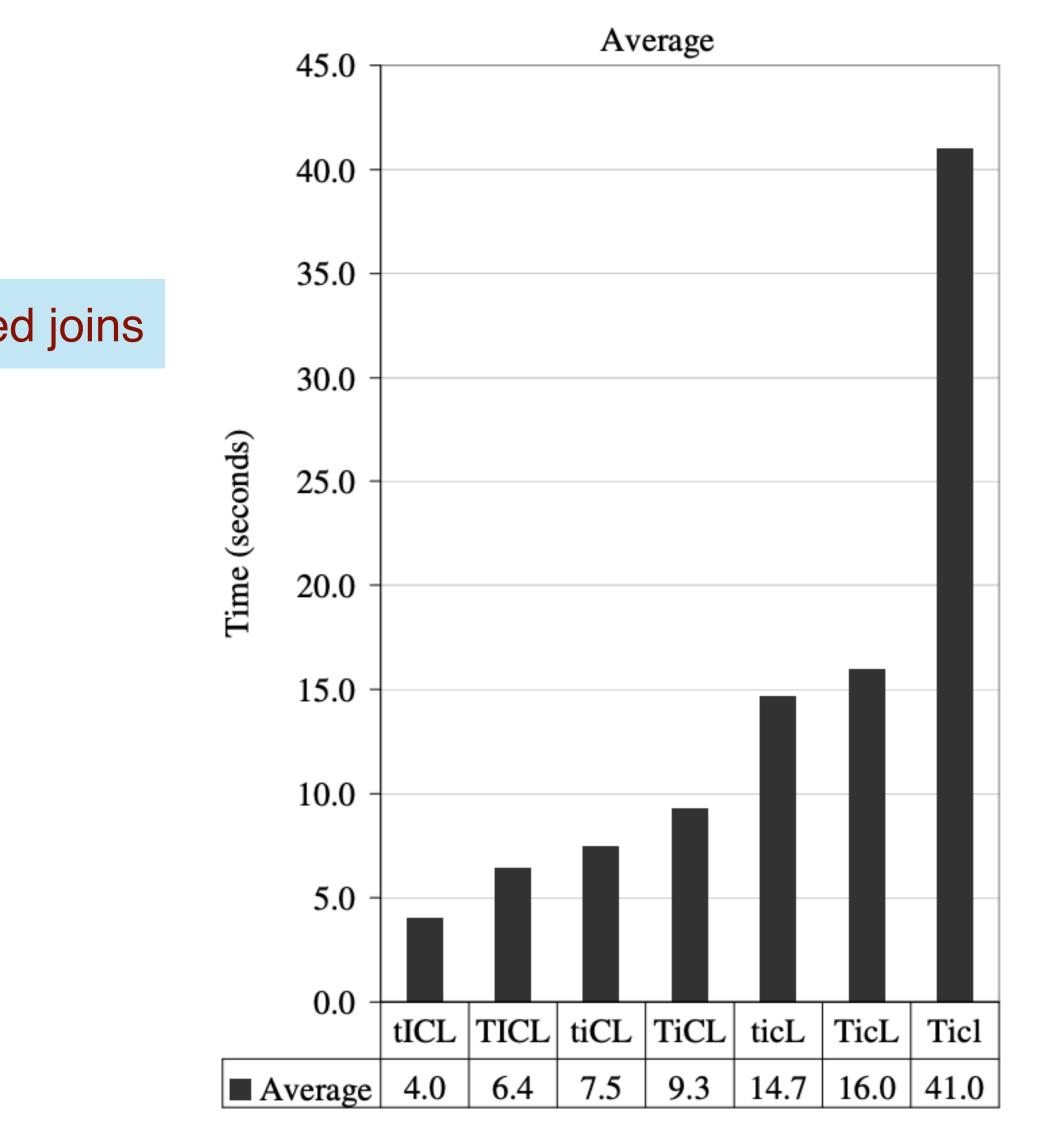
C-store appears to do even better than fully materialized joins

Block processing buys you 5 to 50%

Invisible join buys you 50-75%

Compression buys you 2X

Late materialization gets you almost 3X



T=tuple-at-a-time processing, t=block processing; I=invisible join enabled, i=disabled; C=compression enabled, c=disabled; L=late materialization enabled, l=disabled

Summary

The key takeaways

Row-stores & Column-stores are fundamentally different! Compression Late materialization **Block** iteration Column-store-specific join optimizations

Intro. + Administrivia

Introduction to LSM-trees

[P] "LSM-based Storage Techniques: A Survey", VLDB Journal, 2019

Next time in COSI 167A

[B] "Dissecting, Designing, and Optimizing LSM-based Data Stores", SIGMOD, 2022

Prof. Subhadeep Sarkar

https://ssd-brandeis.github.io/COSI-167A/

