
Class 4

Prof. Subhadeep Sarkar

lab
10
10
10
10
10
10
10
11

0
0
1
0
0
0
0
1

1
0
1
1
0
0

10
10

0
0
1
1
1
1
0
0

1
10
10
10
10
10
10
100

0
0
0
0
0
0

10
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1

lab
10
10
10
10
10
10
10
11

0
0
1
0
0
0
0
1

1
0
1
1
0
0

10
10

0
0
1
1
1
1
0
0

1
10
10
10
10
10
10
100

0
0
0
0
0
0

10
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1

COSI 167A
Advanced Data Systems

Row-stores vs. Column-stores

https://ssd-brandeis.github.io/COSI-167A/

https://ssd-brandeis.github.io/COSI-167A/

Class logistics
and administrivia

Project 1 (C++/Java) has been released (due on Sep 20).

C/C++ learning resources at: https://ssd-brandeis.github.io/COSI-167A/assignments/

The second technical question is now available on the class
website (due before the class on Sep 17).

https://ssd-brandeis.github.io/COSI-167A/assignments/

Column-Stores vs. Row-StoresHow Different Are They Really?

Today in COSI 127B
What’s on the cards?

Column-Stores vs. Row-Stores
How Different Are They Really?

Discussion points:
Are column-stores really novel implementation-wise?

Can row-stores be made to act like column-stores?

What factors make column-stores special?

Row-stores
Storing row by row!

schema: R (A, B, C, D)

A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D

file Thought Experiment 1
Pros & cons of row-stores?

good for inserts/updates
good for queries accessing
most/all columns

read amplification

Row-stores are great for transactional workloads (OLTP).

Column-stores
Storing column-wise!

Thought Experiment 2
Pros & cons of column-stores?

read necessary data only

tuple reconstruction overhead

Column-stores are great for analytical workloads (OLAP).

schema: R (A, B, C, D)

A

file

B C D good for partial updates

inserts are costly

Goal of the paper
Dissecting row-stores and column-stores

Goal: Compare row-stores and column-stores

Motivation: Prior to this paper, several studies highlighted
column-stores performing ~5x better than row-stores

Goal of the paper
Dissecting row-stores and column-stores

Goal: Compare row-stores and column-stores

Motivation: Prior to this paper, several studies highlighted
column-stores performing ~5x better than row-stores

vs.

Goal of the paper
Dissecting row-stores and column-stores

Goal: Can a column-store be simulated using
a row-store?

Motivation: Prior to this paper, several studies highlighted
column-stores performing ~5x better than row-stores

Are there benefits inherent to the
column-store design?

Methodology of the paper
Dissecting row-stores and column-stores

Can a column-store be simulated using a row-store?

Are there benefits inherent to the column-store design?

identify the key design differences
modify a row-store to behave like a column-store

identify the key optimizations in a column-store
relax the optimizations one at a time

Simulating column-store in a row-store
Specialized modifications

Simulating column-store in a row-store
Specialized modifications

Vertical partitioning
physically partition the data per column

Index-only plans
use only indexes in query plans that contain only
relevant columns

Materialized views
temporary tables that contain exactly the answer
to a query

Vertical partitioning
Physically partition the data per column

schema: R (A, B, C, D)

A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D

Vertical partitioning
Physically partition the data per column

schema: R (A, B, C, D)

A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D

schema: R (A, B, C, D)

A B C D

Vertical partitioning
schema: R (A, B) schema: R (A, C) schema: R (A, D)schema: R (A, B, C, D)

A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D

Physically partition the data per column

A B
A B
A B
A B
A B
A B
A B
A B

A C
A C
A C
A C
A C
A C
A C
A C

A D
A D
A D
A D
A D
A D
A D
A D

Vertical partitioning
schema: R (A, B) schema: R (A, C) schema: R (A, D)

Physically partition the data per column

A B
A B
A B
A B
A B
A B
A B
A B

A C
A C
A C
A C
A C
A C
A C
A C

A D
A D
A D
A D
A D
A D
A D
A D

what if A is large
duplicated attribute

any problem?

Vertical partitioning
schema: R (id, A) schema: R (id, B) schema: R (id, C)

Physically partition the data per column

1 A
2 A
3 A
4 A
5 A
6 A
7 A
8 A

1 B
2 B
3 B
4 B
5 B
6 B
7 B
8 B

1 C
2 C
3 C
4 C
5 C
6 C
7 C
8 C

schema: R (id, D)

1 D
2 D
3 D
4 D
5 D
6 D
7 D
8 D

duplicated attribute
any problem?

tuple header

Native column-stores only store raw values as an array.

Index-only plans
Only indexes in query plans

schema: R (A, B, C, D)

A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D

A

B

C

D

space amplification
any problem?

accessing attributes
without predicates

Index-only plans
Only indexes in query plans

schema: R (A, B, C, D)

A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D

A

C

space amplification
any problem?

accessing attributes
without a predicate

Composite index
needs more space
workload knowledge

Materialized views
Tables with exact answers to queries

schema: R (A, B, C, D)

A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D

select max(B) from R
 where A>5 and C<10

A B C
A B C
A B C
A B C

schema: R (A, B, C)

space amplification
any problem?

workload knowledge

Methodology of the paper
Dissecting row-stores and column-stores

Can a column-store be simulated using a row-store?

Are there benefits inherent to the column-store design?

identify the key design differences
modify a row-store to behave like a column-store

identify the key optimizations in a column-store
relax the optimizations one at a time

Methodology of the paper
Dissecting row-stores and column-stores

Can a column-store be simulated using a row-store?

Are there benefits inherent to the column-store design?

identify the key design differences
modify a row-store to behave like a column-store

identify the key optimizations in a column-store
relax the optimizations one at a time

State-of-the-art column-store designs
Identifying the optimizations

State-of-the-art column-store designs
Identifying the optimizations

Late materialization
stitch the columns together as late as possible

Block iteration
execute columnar operations over a block of values

Compression
column-specific compression

Invisible join

select max(B) from R
 where A>5 and C<10

Querying in a column-store
Understanding the schema

schema: R (A, B, C, D)

A

Thought Experiment
select max(B) from R
 where A>5 and C<10

B C D Home work!

Querying in a column-store
Understanding the schema

schema: R (A, B, C, D)

A B C D

max

select max(B) from R
 where A>5 and C<10

when do we see the result?
Late materialization

A

scan A

C

probe C

B

probe BRIDs RIDs

select max(B) from R
 where A>5 and C<10

Querying in a row-store
Understanding the schema

schema: R (A, B, C, D)

A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D

Thought Experiment 3
Example of early materialization?

A B C D
tuple-wise processing

max

A C B

scan A probe C probe B

max

Late materialization
stitch the columns together as late as possible

poor resource utilization
any problem?

may require more I/Os

cache friendly (seq. access)

minimal reconstruction
operate efficiently on
compressed data

advantages?

select max(B) from R
 where A>5 and C<10

Block iteration
execute columnar operations over a block of values

A

scan A probe C probe B

max

A

C

C

B

B

good resource utilization
low query latency

advantages?

Compression
column-specific strategies

schema: Billing (org, quarter, date, state)

Alphabet Q1 Jan 1, 2024 San Fransicco

Apple Q1 Jan 11, 2024 Massachusetts

Netflix Q1 Jan 12, 2024 San Fransicco

Cloudflare Q1 Jan 12, 2024 Washington

Alphabet Q2 Jun 17, 2024 San Fransicco

Microsoft Q2 Jul 17, 2024 Washington

Apple Q2 Jul 27, 2024 Massachusetts

Alphabet Q3 Sep 10, 2024 San Fransicco

row-store

Compression
column-specific strategies

schema: Billing (org, quarter, date, state)

Alphabet Q1 Jan 1, 2024 San Fransicco

Apple Q1 Jan 11, 2024 Massachusetts

Netflix Q1 Jan 12, 2024 San Fransicco

Cloudflare Q1 Jan 12, 2024 Washington

Alphabet Q2 Jun 17, 2024 San Fransicco

Microsoft Q2 Jul 17, 2024 Washington

Apple Q2 Jul 27, 2024 Massachusetts

Alphabet Q3 Sep 10, 2024 San Fransicco

Alphabet

Apple

Netflix

Cloudflare

Alphabet

Microsoft

Apple

Alphabet

Q1

Q1

Q1

Q1

Q2

Q2

Q2

Q3

Jan 1, 2024

Jan 11, 2024

Jan 12, 2024

Jan 12, 2024

Jun 17, 2024

Jul 17, 2024

Jul 27, 2024

Sep 10, 2024

San Fransicco

Massachusetts

San Fransicco

Washington

San Fransicco

Washington

Massachusetts

San Fransicco

row-store
column-stores

which one is easily compressible?

Homogeneous data

vs.

Compression
column-specific strategies

Alphabet

Apple

Netflix

Cloudflare

Alphabet

Microsoft

Apple

Alphabet

Q1

Q1

Q1

Q1

Q2

Q2

Q2

Q3

Jan 1, 2024

Jan 11, 2024

Jan 12, 2024

Jan 12, 2024

Jun 17, 2024

Jul 17, 2024

Jul 27, 2024

Sep 10, 2024

San Fransicco

Massachusetts

San Fransicco

Washington

San Fransicco

Washington

Massachusetts

San Fransicco

column-stores Thought Experiment 4
How do column-stores
compress data efficiently?

Compression
column-specific strategies

Alphabet

Apple

Netflix

Cloudflare

Alphabet

Microsoft

Apple

Alphabet

Q1

Q1

Q1

Q1

Q2

Q2

Q2

Q3

Jan 1, 2024

Jan 11, 2024

Jan 12, 2024

Jan 12, 2024

Jun 17, 2024

Jul 17, 2024

Jul 27, 2024

Sep 10, 2024

San Fransicco

Massachusetts

San Fransicco

Washington

San Fransicco

Washington

Massachusetts

San Fransicco

column-stores Thought Experiment 4
How do column-stores
compress data efficiently?

100M entries; 100K+ unique organizations

Dictionary compression
Replace variable-length strings
with fixed-sized integers

Compression
column-specific strategies

Alphabet

Apple

Netflix

Cloudflare

Alphabet

Microsoft

Apple

Alphabet

Q1

Q1

Q1

Q1

Q2

Q2

Q2

Q3

Jan 1, 2024

Jan 11, 2024

Jan 12, 2024

Jan 12, 2024

Jun 17, 2024

Jul 17, 2024

Jul 27, 2024

Sep 10, 2024

San Fransicco

Massachusetts

San Fransicco

Washington

San Fransicco

Washington

Massachusetts

San Fransicco

column-stores Thought Experiment 4
How do column-stores
compress data efficiently?

100M entries; 100K+ unique organizations

Dictionary compression
Replace variable-length strings
with fixed-sized integers

Use a constant number of bits if
the domain is fixed

Compression
column-specific strategies

Alphabet

Apple

Netflix

Cloudflare

Alphabet

Microsoft

Apple

Alphabet

Q1

Q1

Q1

Q1

Q2

Q2

Q2

Q3

Jan 1, 2024

Jan 11, 2024

Jan 12, 2024

Jan 12, 2024

Jun 17, 2024

Jul 17, 2024

Jul 27, 2024

Sep 10, 2024

San Fransicco

Massachusetts

San Fransicco

Washington

San Fransicco

Washington

Massachusetts

San Fransicco

column-stores Thought Experiment 4
How do column-stores
compress data efficiently?

100M entries; 50 states

Delta compression
Store only the deltas (differences)

Compression
column-specific strategies

Alphabet

Apple

Netflix

Cloudflare

Alphabet

Microsoft

Apple

Alphabet

Q1

Q1

Q1

Q1

Q2

Q2

Q2

Q3

Jan 1, 2024

Jan 11, 2024

Jan 12, 2024

Jan 12, 2024

Jun 17, 2024

Jul 17, 2024

Jul 27, 2024

Sep 10, 2024

San Fransicco

Massachusetts

San Fransicco

Washington

San Fransicco

Washington

Massachusetts

San Fransicco

column-stores Thought Experiment 4
How do column-stores
compress data efficiently?

200 Q1’s, 300 Q2’s, 1000 Q3’s, …

Compression
column-specific strategies

Q1

Q1

Q1

Q1

Q2

Q2

Q2

Q3

Thought Experiment 4
How do column-stores
compress data efficiently?

200 Q1’s, 300 Q2’s, 1000 Q3’s, 1200 Q4’s, …
Q1 1 200

Q2 201 300

Q3 301 1300

Q4 1301 2500
Run-length encoding

Store only the start index
& frequency

Needs to be sorted
Can operate on compressed data

Invisible join
Star-schema specific optimization

Benchmarking
The set up!

When comparing database systems we need a common “language”

Benchmarks from the Transaction Performance Council

Also, a benchmark for data warehousing

standardization is key for future comparison

TPC-B, TPC-C, TPC-H, TPC-DS, etc.

 Star Schema Benchmark

 Star Schema Benchmark
Fact table and Dimension tables

Comes with 13 queries!
Fact table

Dimension tables

Invisible join
Star-schema specific optimization

Motivation: rewrite joins as predicates on foreign keys in fact table

Algorithm:
1. apply each predicate to the appropriate dimension table
2. build a hash table on matching keys
3. compute bitvector with bits set for qualifying positions (tuples)
4. intersect bitvectors (positions) via bitwise AND
5. for each resulting position reconstruct the resulting tuple

1. apply each predicate to the appropriate dimension table

2. build a hash table on matching keys

1. apply each predicate to the appropriate dimension table

2. build a hash table on matching keys

3. compute bitvector with bits set for qualifying positions (tuples)

4. intersect bitvectors (positions) via bitwise AND

5. for each resulting position reconstruct the resulting tuple

works only for star schemas
not a general join algorithm

Experiments
Comparing the results

Experiments
Comparing the results

1 CPU 2.8GHz, 3GB RAM, Red Hat Linux 5

4-disk HDD array with 160-200MB/s aggregate bandwidth

(older paper, so small numbers!)

Report averages with “warm” bufferpool (smaller than data size)

Focus on SSB averages (the paper has more detailed graphs)

tuple overheads
(additional record IDS) tuple reconstruction (via expensive

joins) prior to the join between tables

Comparing the results

Experiments with row-stores

MV have the result
readily available

A native column-
store is faster

Comparing the results

Row-stores vs. column-stores

Row-Store

25

To make the most of a column-
store:

1. efficient compression 

2. column-specific execution
(late materialization)

Comparing the results

Row-stores vs. column-stores

C-store appears to do even better than fully materialized joins

Block processing buys you 5 to 50%

Invisible join buys you 50-75%

Compression buys you 2X

Late materialization gets you almost 3X

T=tuple-at-a-time processing, t=block processing;  
I=invisible join enabled, i=disabled;  
C=compression enabled, c=disabled;  
L=late materialization enabled, l=disabled

Summary
The key takeaways

Row-stores & Column-stores are fundamentally different!
Compression
Late materialization
Block iteration
Column-store-specific join optimizations

Intro. + Administrivia

Next time in COSI 167A

Introduction to LSM-trees

Class 4

Prof. Subhadeep Sarkar

lab
10
10
10
10
10
10
10
11

0
0
1
0
0
0
0
1

1
0
1
1
0
0

10
10

0
0
1
1
1
1
0
0

1
10
10
10
10
10
10
100

0
0
0
0
0
0

10
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1

lab
10
10
10
10
10
10
10
11

0
0
1
0
0
0
0
1

1
0
1
1
0
0

10
10

0
0
1
1
1
1
0
0

1
10
10
10
10
10
10
100

0
0
0
0
0
0

10
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1
10
10
1

1

11
10

1

0
0

0
0

10
100

10
00

0
0
10
10

0
1

1

1

1 10
00

10

1
0
1

1
0

0
0

1

0
0
0

0
0

1

1
1

1

COSI 167A
Advanced Data Systems

Row-stores vs. Column-stores

https://ssd-brandeis.github.io/COSI-167A/

https://ssd-brandeis.github.io/COSI-167A/

